

ОАО "АВТОДИЗЕЛЬ" (Ярославский моторный завод)

СИЛОВЫЕ АГРЕГАТЫ

ЯМЗ-236НЕ2, ЯМЗ-236НЕ, ЯМЗ-236Н ЯМЗ-236БЕ2, ЯМЗ-236БЕ, ЯМЗ-236Б

> Руководство по эксплуатации 236H-3902150 РЭ

ОАО "АВТОДИЗЕЛЬ" (Ярославский моторный завод)

СИЛОВЫЕ АГРЕГАТЫ

ЯМЗ-236HE2, ЯМЗ-236HE, ЯМЗ-236H ЯМЗ-236БE2, ЯМЗ-236БE, ЯМЗ-236Б

Руководство по эксплуатации 236H-3902150 РЭ

Руководство содержит описание конструкции, основные правила эксплуатации и технического обслуживания силовых агрегатов ЯМЗ-236НЕ2, ЯМЗ-236НЕ, ЯМЗ-236НЕ, ЯМЗ-236БЕ2, ЯМЗ-236БЕ, ЯМЗ-236Б всех комплектаций и исполнений.

Положения руководства распространяются на силовые агрегаты в комплектности ОАО «Автодизель».

Руководство предназначено для всех лиц, связанных с эксплуатацией силовых агрегатов ЯМЗ соответствующих моделей.

Ответственный редактор — директор ИКЦ ОАО «Автолизель» Н.Л. Шамаль.

В подготовке материалов и составлении руководства принимали участие: В.К. Кузнецов, Д.В. Бойков, А.А. Бибиков, В.П. Волин, Е.Н. Гогин, Ю.В. Голубев, В.В. Курманов, В.В. Паймулов, В.В. Рыбаков, В.В. Таммор.

Все замечания по конструкции и работе силового агрегата, а также пожелания и предложения по содержанию настоящего руководства просим направлять по адресу: 150040, г. Ярославль, проспект Октября, 75, ОАО «Автодизель», Инженерно-конструкторский центр.

В связи с постоянной работой по совершенствованию двигателей, направленной на повышение их надежности и долговечности, улучшение экологических показателей в конструкцию могут быть внесены изменения, не отраженные в настоящем издании.

© ОАО «Автодизель» (ЯМЗ), 2014

Перепечатка, размножение или перевод, как в полном, так и в частичном виде, не разрешается без письменного разрешения ИКЦ ОАО «Автодизель»

190814

УВАЖАЕМЫЙ ВЛАДЕЛЕЦ!

Мошный экономичный И силовой агрегат, эксплуатации которого Вы приступаете, надежен и удобен в эксплуатации. Однако нужно помнить, что срок службы в значительной степени зависит регулярного otтщательного ухода за ним. Перед началом эксплуатации ВНИМАТЕЛЬНО изучите настоящее руководство соблюдайте все его требования. Руководство составлено на основе исследовательских работ и опыта эксплуатации и содержит необходимые указания, точное и неуклонное соблюдение которых обеспечит Вам безотказную длительную работу силового агрегата.

Ha заводе непрерывно ведется работа усовершенствованием силового агрегата. Обратите внимание на дополнение, в которое внесены технические внедренные издания изменения, после настоящего руководства. Дополнение располагается конпе руководства или прикладывается отдельно.

ВНИМАНИЕ! ПЕРЕД НАЧАЛОМ ЭКСПЛУАТАЦИИ СИЛОВОГО АГРЕГАТА/ДВИГАТЕЛЯ ВНИМАТЕЛЬНО ПРОЧТИТЕ РАЗДЕЛ «ГАРАНТИИ ЗАВОДА И ПОРЯДОК ПРЕДЪЯВЛЕНИЯ РЕКЛАМАЦИЙ» НАСТОЯЩЕГО РУКОВОДСТВА, В КОТОРОМ ПРИВЕДЕНА ВАЖНАЯ ИНФОРМАЦИЯ О ГАРАНТИИ НА НОВЫЙ СИЛОВОЙ АГРЕГАТ/ДВИГАТЕЛЬ ПРОИЗВОДСТВА ОАО «АВТОДИЗЕЛЬ» (ЯМЗ), ОБ УСЛОВИЯХ ПРЕДОСТАВЛЕНИЯ ГАРАНТИИ, ГАРАНТИЙНОМ ПЕРИОДЕ И ПОРЯДКЕ ПРЕДЪЯВЛЕНИЯ РЕКЛАМАЦИЙ.

ВНИМАНИЕ!

- 1. Исправная работа силового агрегата и длительный срок службы находятся в прямой зависимости от культуры эксплуатации. Перед началом эксплуатации внимательно ознакомьтесь с настоящим руководством.
- 2. Соблюдать правила, указанные в разделе "Обкатка нового двигателя". В этот период происходит приработка трущихся поверхностей.
- 3. Применение топлива, смазочных материалов, охлаждающих жидкостей, не указанных в настоящем руководстве, не разрешается.
- 4. Перед пуском двигателя после смены масла, масляного фильтрующего элемента, длительной (5 суток и более) стоянки, замены или ремонта сборочных единиц и деталей, установить скобу останова регулятора в положение выключенной подачи и в течение 10-15 секунд проворачивать стартером коленчатый вал двигателя. При наличии давления масла можно пускать двигатель, при отсутствии пуск повторить через 1-1,5 мин. После пуска двигатель должен работать на оборотах холостого хода не превышающих 1000 мин⁻¹, но не более 5 мин.
- 5. После пуска прогрев двигателя до рабочей температуры 75-90°C производить под нагрузкой. Не следует прогревать двигатель, допуская его длительную работу на минимальной частоте вращения холостого хода. Как только двигатель начнет реагировать на изменение подачи топлива и в системе тормозов будет обеспечено нормальное рабочее давление, постепенно увеличивать частоту вращения до средней рабочей и начинать движение на пониженных передачах. Полная нагрузка непрогретого двигателя не допускается. Допускается кратковременное (до 10 мин) повышение температуры охлаждающей жидкости до 95°C. Допускается предельная температура охлаждающей жидкости до 95°C при применении моторных масел повышенной вязкости, не ниже М-4₃/14 (SAE 10W/40). При этом допускается кратковременное (до 10 мин) повышение температуры до 100°C.
- 6. При эксплуатации двигателя следить за давлением масла в системе смазки (раздел «Контроль за работой двигателя»).
- 7. Во избежание поломки турбокомпрессора перед остановкой двигатель должен поработать в течение 3-5 минут на средних оборотах холостого хода.
- 8. **Не рекомендуется** работа двигателя на минимальной частоте вращения холостого хода более 10-15 минут.
- 9. Во избежание поломки категорически запрещается включать стартер на работающем или неостановившемся двигателе.
- 10. Техническое обслуживание необходимо выполнять согласно раздела «Техническое обслуживание».
- 11. Работа двигателя со светящимися лампами сигнализаторов засоренности масляного или воздушного фильтров не допускается.
- 12. На двигателях применять фильтрующие элементы, имеющие Сертификат соответствия, выданный соответствующим центром по сертификации, и допуск на их применение, выданный ОАО «Автодизель» изготовителям.
- 13. Соблюдайте правила эксплуатации сцепления и коробки передач (см. соответствующие разделы руководства).

НАЗНАЧЕНИЕ И ОСОБЕННОСТИ КОМПЛЕКТАЦИИ СИЛОВЫХ АГРЕГАТОВ

Силовые агрегаты (СА) и двигатели производства ОАО «Автодизель» многоцелевого назначения. Технические характеристики, универсальность, высокая степень унификации, ремонтопригодность способствуют их широкому применению на автомобилях Минского, Уральского, Могилевского, Кременчугского автозаводов и на изделиях, выпускаемых другими заводами.

Применяемость СА и двигателей ОАО «Автодизель» приведена в таблице. СА и двигатели предназначены для установки только на изделия, указанные в таблице и других дополнениях к настоящему руководству. Применение СА и двигателей на новых моделях изделий обязательно должно быть согласовано изготовителем изделий с ОАО «Автодизель».

Модель СА,	Ко	Комплектность		Изделия, на которые	
модель СА, двигателя и комплектация	Модель сцепления	Модель коробки передач	Модель генератора	устанавливаются СА,	
ямз-	-	_	Г1000ВК.	ООО «ЧТЗ-Уралтрак»	
236H-3			11.1	Тракторы типа Т10М	
-EMR	_	_	_	ООО «Ликинский автобус»	
236HE-18* ¹				Автобус ЛиАЗ-5256	
			2	(в запасные части)	
-EMR	ЯМЗ-	-SMR	-* ²	OAO «MA3» Автомобили	
236HE-26	182-10	2361-02		МАЗ (в запасные части)	
-ЕМЯ	-ЕМК	ЯМЗ-	_	ЗАО «ВАП «Волжанин»	
236HE-27	182-10	2361-81		Автобусы «Волжанин-	
				5270, -52701, -52702»	
				(в запасные части)	
-EMR	ЯМЗ-	-ЕМК	_	ООО «Ликинский автобус»	
236HE-28* ¹	182-10	2361-81		Автобус ЛиАЗ-5256	
(D, (D)	m m	m m	2112	(в запасные части)	
-SMR	-EMR	ЯМЗ- 22.11.00	3112.	«АМАЗ» Автобусы МАЗ- 104,-104С; ЗАО «Мичурин-	
236HE-31	182-10	2361-80	3771-01	ский автобус» MAP3-5266,	
				-52661 (в запасные части)	
-EMR	ямз-	ЯМЗ-	_*2	ОАО «МАЗ» Автомобили	
236HE-32	182-10	2361-02		МАЗ (в запасные части)	
-£MR	-EMR	ЯМ3-	_	ОАО «ЛАЗ» Автобусы	
236HE-33* ¹	182-10	2361-81		ЛАЗ-52528 (в запчасти)	
-ЕМЯ	_	_	4012.	ОАО «Промтрактор»	
236НД-2			3771-86	Бульдозерно-рыхлительный	
				агрегат Т-11.02Я	

Maria GA	Ко	мплектнос	ТЬ	TI
Модель СА,		Модель		Изделия, на которые
двигателя и	Модель	коробки	Модель	устанавливаются СА,
комплектация	сцепления	передач	генератора	двигатели
-ЕМЯ	_	_	4007	ООО «КЗ «Ростсельмаш»
236HД-3* ⁵			4007. 3771-96	Комбайн «Вектор»
			3//1-90	(в запчасти)
ЯМ3-	-	_	4007.	ООО «КЗ «Ростсельмаш»
236HД-4* ⁵			3771-96	Комбайн «Вектор»
ЯМЗ-	_	_	4007.	ООО «КЗ «Ростсельмаш»
236НД2* ⁵			3771-96	Комбайн «Вектор»
ЯМЗ-	_	_	4012.	ОАО «Промтрактор»
236НБ-2			3771-86	Бульдозерно-рыхлительный
	m m 100	an m	0.400	агрегат Т-9.01Я
ЯМЗ-	ЯМЗ-182	-EMR	9422.	ОАО «АЗ «Урал» Автомо-
236HE2-3*1,*5		236У3	3701-03	били Урал (в запчасти)
ЯМ3- 236HE2-15* ¹	_	_	_	ООО «Ликинский автобус» Автобус ЛиАЗ-5256
230HE2-13				(в запасные части)
-ЕМЯ	ЯМЗ-	ЯМЗ-	4002.	ОАО «АЗ «Урал»
236HE2-20*1,*3	182-35	2361-58	3771B-80	Автомобиль Урал-43206-41
ЯМЗ-236НЕ2-	ЯМ3-	ЯМ3-	9422.	Автомобиль Урал-43206-41 ОАО «АЗ «Урал»
$24^{*1,*5,*6}$	182-15	2361-56	3701-03	Автомобили Урал
-EMR	ЯМЗ-	ЯМЗ-	_	ООО «Ликинский автобус»
236HE2-28*1	182-15	2361-87		Автобус ЛиАЗ-5256
			. 4	(в запасные части)
ЯМЗ-	ЯМ3-	-EMR	_*4	OAO «MA3»
236HE2-30* ⁵	182-15	2361-06		Автомобили МАЗ
326HE2 22	ЯМЗ-	ЯМЗ-	_	ЗАО «ВАП«Волжанин»
<u>236HE2-33</u> ЯМ3-	182-15 ЯМЗ-	2361-87 ЯМЗ-	_*2	Автобус Волжанин-5270 ОАО «МАЗ» Автомобили
236HE2-36	182-10	2361-02		
ЯМЗ-	ЯМЗ-	ЯМЗ-	3112.	МАЗ (в запасные части) РУП «ОЗ «Неман»
236HE2-37* ¹	182-15	2361-87	3771-01	Автобусы Неман 5201
-ЕМЯ	ЯМ3-	-8MR	9422.3701-03	ОАО «АЗ «Урал» Автомоби-
236HE2-45* ⁵	182-15	2361-56	или	ли Урал-4320,-43206,-5557,
			4512.3771-10	-55571, -44202, вахт.авт-сы
ЯМ3-	_	_	4007.	ПО «Гомсельмаш» Комбайн
236HE2-47* ⁵			3771-96	K3C-812 «ПАЛЕССЕ GS812»
ЯМ3-	ЯМЗ-	_	4008.	ООО «ЧТЗ-Уралтрак»
236HE2-51	182-15		3771-49	Трактор гусеничный Т-10М
ЯМ3- 236Б-2	_	-	3112. 3771-20	ОАО «Курганмашзавод»
<u>230Б-2</u> ЯМЗ-			1322.3771	Гусен. вездеход ТМ-120 ОАО «ВЭКС» (Воронеж)
236Б-3		_	1322.3771 или Г273B2	Prekabaton 301
ЯМЗ-	_	_	Г1000ВК.	Экскаватор 30L OOO «ЧТЗ-Уралтрак»
236Б-4			11.1	Трактор гусеничный Т-15
-EMR	_	_	4008.	ООО «ЧТЗ-Уралтрак»
236Б-5			3771-49	Трактор гусеничный Т-12
25505		1	27.11	

Молел СА	Кс	мплектнос	ТЬ	Издания на котор на
Модель СА, двигателя и комплектация	Модель сцепления	Модель коробки передач	Модель генератора	Изделия, на которые устанавливаются СА, двигатели
ЯМЗ- 236БК-3* ⁵	_	ı	4007. 3771-86	ООО «КЗ «Ростсельмаш» Комбайн «ACROS 530» (в запчасти)
ЯМЗ- 236БК-4* ⁵	_	ı	4007. 3771-96	OOO «КЗ «Ростсельмаш» Комбайн «ACROS 530»
ЯМЗ- 236БК-7* ⁵	_	_	4007. 3771-96	OOO «КЗ «Ростсельмаш» Комбайн «Вектор»
ЯМ3- 236БЕ2Т-6	_	1	3112. 3771-01	ОАО «МЗКТ» Шасси МЗКТ-8022 (в запчасти)
ЯМЗ- 236БЕ2-14* ¹ ,* ³	ЯМ3- 182-35	ЯМ3- 336-24	4002. 3771B-80	ОАО «АЗ «Урал» Автомобиль Урал-4320-43
ЯМЗ- 236БЕ2Т-19	ЯМЗ-182	ЯМ3- 238ВМ7	3112. 3771-01	ОАО «МЗКТ» Шасси МЗКТ-8022-020
ЯМЗ- 236БЕ2-20	MOM	-	9422. 3701-03	ООО «Брянский арсенал» Автогрейдеры ГС-25.09,-25.11
ЯМЗ- 236БЕ2-21* ⁵	ЯМ3- 182-15	ЯМ3- 2381-07	_*4	OAO «MA3» Шасси MA3- 533603-240, -630303-245
ЯМЗ- 236БЕ2-22* ⁵	ЯМ3- 182-15	ЯМ3- 2381-06	_* ⁴	OAO «MA3» Автомобили MA3
ЯМЗ- 236БЕ2-28* ⁵	_	_	4007. 3771-96	ПО «Гомсельмаш» Комбайн КЗС-10К «ПАЛЕССЕ GS10»
ЯМЗ- 236БЕ2-29* ⁵	-	_	4007. 3771-96	OOO «КЗ «Ростсельмаш» Комбайн «ACROS 530»
ЯМ3- 236БЕ2Т-37* ⁵	-		AAN 5930 11.204.758	ОАО «МЗКТ» Шасси МЗКТ-500300

^{*1 –} двигатели с V-образными ТНВД.

 $^{*^2}$ — генератор модели 3232.3771 производства ОАО «БАТЭ» г. Борисов, Минской обл., Беларусь устанавливает ОАО «МАЗ». Допускается замена на генератор модели 1322.3771 производства ОАО «ЭЛТРА» г. Ржев или Γ 273B2-03 производства ОАО «ЗиТ» г. Самара.

^{*3 —} двигатели ЯМЗ-236БЕ2-14, ЯМЗ-236НЕ2-20 комплектуются герметичным стартером 2562.3708-40, идентичному стартеру 25.3708-21. Герметичность достигается установкой резинового кольца по месту посадки стартера и картера маховика. Изменена конструкция кронштейнов крепления стартера к блоку. При замене кронштейнов крепления на серийные можно устанавливать стартер 25.3708-21 (см. раздел «Силовые агрегаты ЯМЗ-236БЕ2-14 и ЯМЗ-236НЕ2-20»).

 $^{*^4}$ – генератор модели 3252.3771-50 производства ОАО «БАТЭ» устанавливает ОАО «МАЗ».

 $^{*^5}$ – двигатели комплектуются вентилятором с вязкостной муфтой;

 $^{*^6}$ – допускается установка сцепления ZF Sachs MFZ 430.

Двигатели с турбонаддувом ЯМЗ-236Н, ЯМЗ-236Б, их модификации и комплектации соответствуют экологическим нормативам Евро-0. Двигатели с турбонаддувом ЯМЗ-236НД, ЯМЗ-236БК-3 и их комплектации соответствуют ГОСТ Р41.96-2005 (Правила ЕЭК ООН №96).

Двигатели с турбонаддувом ЯМЗ-236HE, ЯМЗ-236БЕ и их комплектации соответствуют экологическим нормативам Евро-1.

Двигатели с турбонаддувом ЯМЗ-236HE2, ЯМЗ-236БЕ2 и их комплектации соответствуют экологическим нормативам Евро-2.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА

Силовые агрегаты рассчитаны на эксплуатацию при температурах окружающего воздуха от минус 60° С до плюс 50° С, относительной влажности до 98% при температуре 25° С, запыленности воздуха до $0.4~\rm r/m^3$, а также на движение автомобиля в горных условиях на высоте до $4500~\rm m$ над уровнем моря и преодоление перевалов до $4650~\rm m$ над уровнем моря при соответствующем снижении мощностных и экономических показателей.

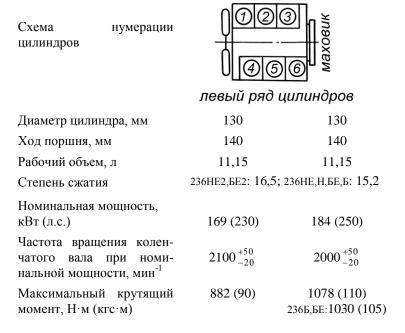


Рис. 1. Силовой агрегат ЯМЗ-236БЕ2

ОСНОВНЫЕ ПАРАМЕТРЫ И ХАРАКТЕРИСТИКИ

3		
Основные параметры	ЯМЗ-	-EMR
и характеристики	236HE2,HE,H	236БЕ2,БЕ,Б
Модель силового агрегата	ЯМЗ-236НЕ2,	ЯМЗ-236БЕ2,
	ЯМ3-236НЕ,	ЯМЗ-236БЕ,
	ЯМ3-236Н	ЯМЗ-236Б
Тип двигателя	Четырехтактный ем от сжатия и ту	с воспламенени- рбонаддувом
Число цилиндров	6	6
Расположение цилиндров	V-образное, уг	гол развала 90°
Порядок работы цилинд-		
ров	1-4-2-	-5-3-6

правый ряд цилиндров

Основные параметры	-ЕМЯ	ЯМЗ-	
Основные параметры и характеристики	236HE2,HE,H	236БЕ2,БЕ,Б	
	23 01122,112,11	230022,02,0	
Частота вращения при максимальном крутящем	1100.	-1300	
моменте, мин ⁻¹	236Н,НЕ,Б,БЕ		
	23 011,112,2,22	. 1200 1.00	
Частота вращения холостого хода, мин ⁻¹ :			
максимальная, не более	236Н,НЕ: 2275*	236Б,БЕ: 2175*	
	236НЕ2: 2340	236БЕ2: 2340	
минимальная	600		
	236НЕ2,БЕ2	650700	
Удельный расход топлива			
по скоростной характе-			
ристике, г/кВт·ч (г/л.с.·ч):			
минимальный	197(145)		
	236НЕ,БЕ: 207(152)		
	236Н,Б: 208 (153)		
при номинальной	236HE2: 2		
мощности		236EE2: 223(164)	
	236НЕ,БЕ: 227(167) 236Н,Б: 225 (165)		
	236Н,Б: 2	25 (105)	
Удельный расход масла на			
угар в % к расходу топлива, не более	0	2	
	0,2		
Скоростная характеристика	См. рис. 3 – 8		
Способ смесеобразования	Непосредственный впрыск		
Камера сгорания	Неразделенного типа в поршне		
Число клапанов на цилиндр	Один впускной и один выпускной		
Тепловые зазоры в			
приводе клапанов на			
холодном двигателе, мм	0,25—0,30		

^{*} – на двигателях, укомплектованных ТНВД V-образного исполнения производства ЯЗДА (см. приложение 7).

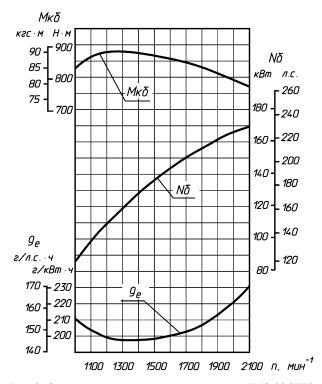


Рис. 3. Скоростная характеристика двигателя ЯМЗ-236HE2: Мк.б. - крутящий момент брутто; N6 - номинальная мощность брутто; ge-удельный расход топлива; n - частота вращения коленчатого вала.

Распределительный вал	Общий для всех шестеренчатым прив	цилиндров, с юдом
Фазы газораспределения:		
	ЯМЗ-236Н,НЕ,Б,БЕ	ЯМ3-236НЕ2,БЕ2
впускные клапаны		
открытие, град. до ВМТ	20	21,5
закрытие, град. после НМТ	46	31,5
выпускные клапаны		
открытие, град. до НМТ	66	63
закрытие, град. после ВМТ	20	29,5

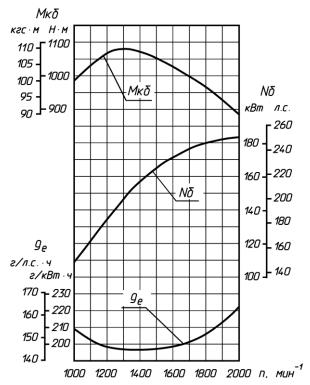


Рис. 4. Скоростная характеристика двигателя ЯМЗ-236БЕ2: Мк.б. - кругящий момент бругто; Nб - номинальная мощность бругто; ge-удельный расход топлива; n - частота вращения коленчатого вала.

Основные параметры	ЯМЗ-	ЯМЗ-
и характеристики	236HE2,HE,H	236БЕ2,БЕ,Б

Система смазки

Смешанная (236НЕ,БЕ,НЕ2,БЕ2 масла в жидкостноохлаждением масляном теплообменнике). давлением смазываются подшипники коленчатого вала, распределительного вала, толкателей, коромысел, сферические поверхности штанг толкателей, топливный насос высокого давления, турбокомпрессор. Остальные трущиеся поверхности смазываются разбрызгиванием.

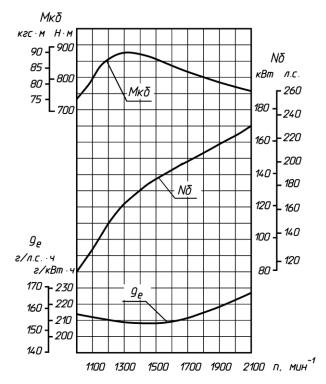


Рис. 5. Скоростная характеристика двигателя ЯМЗ-236НЕ: Мк.б. - крутящий момент брутто; N6 - номинальная мощность брутто; ge-удельный расход топлива; n - частота вращения коленчатого вала

Основные параметры	ЯМЗ-	ЯМЗ-
и характеристики	236HE2,HE,H	236БЕ2,БЕ,Б

Давление масла в прогретом двигателе в магистрали блока, к Π a (кгс/см²):

при	номинальной	
частоте	е вращения	400-700 (4-7)
при	минимальной	
частоте	е вращения, не	
менее		100 (1,0)

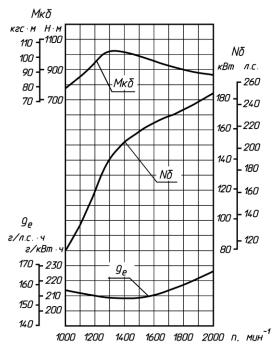


Рис. 6. Скоростная характеристика двигателя ЯМЗ-236БЕ: Мк.б. - крутящий момент брутто; N6 - номинальная мощность брутто; ge-удельный расход топлива; n - частота вращения коленчатого вала

Основные параметры		-EMR	ЯМЗ-	
и харак	теристики	236H,HE,HE2	236Б,БЕ,БЕ2	
Масляные фильтры		Два: полнопоточный фильтр очистки с фильтрующим элементом и фильтр центробежной очистки		
Масляный насос		Шестеренчатого ционный (236H,Е ный)	, , , ,	
Систем	а охлаждения	Жидкостно-масля	ный теплообмен-	
масла		ник устанавливает а на двигателя воздушно-масляни ник устанавливает	их ЯМЗ-236Н,Б ый теплообмен-	
		пик устапавливаст	сл впс двигателя	

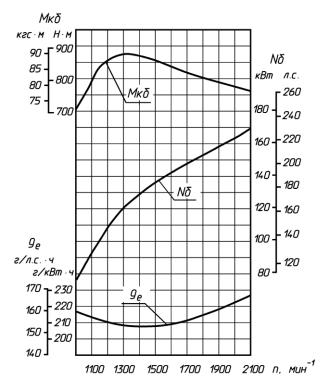


Рис. 7. Скоростная характеристика двигателя ЯМЗ-236H: Мк.б. - крутящий момент брутто; N6 - номинальная мощность брутто; ge-удельный расход топлива; n - частота вращения коленчатого вала.

Основные параметры	ЯМЗ-	ЯМЗ-
и характеристики	236HE2,HE,H	236БЕ2,БЕ,Б

Давление масла открытия клапанов системы смазки, $\kappa\Pi a$ ($\kappa rc/cm^2$):

менника

редукционный клапан масляного насоса предохранительный клапан воздушномасляного теплооб-

236НЕ2,БЕ2,НЕ,БЕ: 700-750 (7,0-7,5) 236Н,Б: 700-800 (7,0-8,0)

236Н,Б: 100-130 (1,0-1,3)

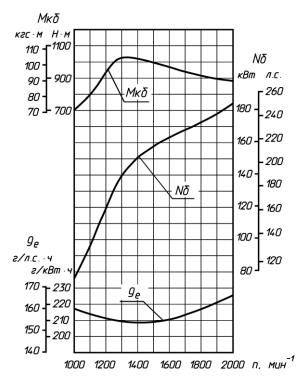


Рис. 8. Скоростная характеристика двигателя ЯМЗ-236Б: Мк.б. - крутящий момент брутто; Nб - номинальная мощность брутто; ge-удельный расход топлива; n - частота вращения коленчатого вала.

Основные параметры	-SMR	ЯМЗ-
и характеристики	236HE2,HE,H	236БЕ2,БЕ,Б
дифференциальный клапан	490-520 (4,9-5,2) 236н,Б: 520-560 (5,2-5,6)	
перепускной клапан масляного фильтра	200-250 (2,0-2,5)	
Система питания топливом	Разделенного тиг	ıa
Топливный насос высокого давления (ТНВД) с	Шестисекционный, плунжерный, плунжеры золотникового типа	
регулятором и топливо-подкачивающим насосом		

Основные параметры	-EMR	-EMR
и характеристики	236НЕ2,НЕ,Н	236БЕ2,БЕ,Б
Модель ТНВД		3.1111005-20*
	236БЕ2: 133	3.1111005-30*
	236HE: 604	.1111005-10*
	236БЕ: 607.	1111005-10*
	236Н: 604.1	111005
	236Б: 607.1	111005
Порядок работы секций	133.1111005-20	٦
топливного насоса	133.1111005-30	
	604.1111005	1
	607.1111005	1 4 2 5 2 5
	604.1111005-10	> 1-4-2-3-3-6
	607.1111005-10	
Регулятор частоты	Центробежный, в	
вращения	¬, -	• • • • • • • • • • • • • • • • • • •
Топливоподкачивающий	Поршневой с п	насосом ручной
насос	прокачки топлив	1 2
Форсунки	Закрытого типа,	
r opeyman	тыми распылител	
	236Н,Б,НЕ,БЕ: - 261	
	236HE с V-образным	
		204.1112010-50.01
	236НЕ2,БЕ2: - 267.1	112010-01 или
	204.1112010-50.0	
	236НЕ2,БЕ2 с V-обра	
		ли 204.1112010-50
Давление начала впрыски-	261.1112010-13(12):	$22,6^{+0,8} (230^{+8})$
вания форсунки, МПа	267.1112010-01, -11:	$26,5^{+0,8}$ (270 ⁺⁸)
$(\kappa \Gamma c/cm^2)$	204.1112010-50, -50.0	1: $26.5^{+1.2}$ (270 ⁺¹²)
Установочный угол	Устанавливается	
опережения впрыскивания	маховике и корпу	усе ТНВД
топлива	** 236НЕ2, БЕ2:	6^{o+1^o}
	*** 236НЕ, БЕ:	$13^{o^{\pm 1^o}}$
	236Н, Б:	15°+1°
* IDVESTORY MODEL KOMPROSTORET		

^{* –} двигатели могут комплектоваться ТНВД V-образного исполнения (см. прил. 7).

^{** –} на двигателях, укомплектованных ТНВД V-образного исполнения (см. прил. 7), установочный угол опережения впрыскивания топлива 6°...7°.
*** – на двигателях, укомплектованных ТНВД V-образного исполнения (см. прил. 7), установочный угол опережения впрыскивания топлива 10°...11°.

Основные параметры	-SMR	ЯМЗ-
и характеристики	236НЕ2,НЕ,Н	236БЕ2,БЕ,Б
Топливные фильтры:		
грубой очистки	Со сменным фильтрующим элементом	
тонкой очистки	Со сменным фильтром для топлива. На крышке расположен перепускной жиклер или, при наличии на двигателе ЭФУ, клапан-жиклер. Давление открытия клапана-жиклера 20-40 (0,2-0,4) кПа (кгс/см²)	
Система наддува	Газотурбинный, компрессором	одним турбо-
Турбокомпрессор (ТКР)		или ТКР 90*, с ентростремитель- и центробежным
Система охлаждения	дована термостат ством для	циркуляцией идкости. Обору- гическим устрой- автоматического плового режима
Водяной насос	Центробежного т ременным приво	
Вентилятор	Шестилопастный тым приводом муфтой включен	й, с шестеренча- и фрикционной ния вентилятора фты включения
Жидкостно-масляный		или трубчатого
теплообменник		ны краником или
(236НЕ2,БЕ2,НЕ,БЕ)	пробкой для сли жидкости	ва охлаждающей
Электрооборудование	Однопроводная с Номинальное на	

^{* –} турбокомпрессор по конструкции аналогичен ТКР модели 122-07

Основные параметры	ЯМЗ-	-ЕМЯ
и характеристики	236НЕ2,НЕ,Н 236БЕ2,Б	
Генератор Пусковое устройство	Переменного тока, с клиноременным приводом, с номинальным напряжением 28В Модель генератора смотри раздел «Комплектация» Электрический стартер модели 25.3708-21 или AZF 4581 производства фирмы "Искра" (Словения), номинальное напряжение 24В. Для облегчения пуска холодного двигателя предусмотрено электрофакельное устройство	
Сцепление	Смотри раздел «І	Комплектация»
Коробка передач	Смотри раздел «I	Комплектация»
Заправочные емкости, л:		
система смазки двигателя (без объема радиатора) муфта опережения	2	4
впрыскивания (ЯМЗ- 236Н,НЕ,Б,БЕ)	0,	14
система охлаждения (без объема радиатора и расширительного бачка)	1 236БЕ,БЕ2,Н	7 HE,HE2-18,5
коробка передач семейства ЯМЗ-236П	5,	.5
коробка передач семейства ЯМЗ-238М	8	3
Масса незаправленного силового агрегата в комплектности поставки, кг:		
без сцепления и коробки передач	95 236HE,	

Основные параметры	-ЕМК	-EMR
и характеристики	236HE2,HE,H	236БЕ2,БЕ,Б
со сцеплением и	1265 (с КП ЯМЗ-236П)	1350
коробкой передач	236HE: 1275	236БЕ: 1380
Габаритные размеры, мм	См. р	рис. 9
1276 1088		331
	a)	
1276 1088 2070	5222	331

б)

- Рис. 9. Габаритные размеры силовых агрегатов: a) силовые агрегаты, укомплектованные пятиступенчатой коробкой передач;
- б) силовые агрегаты, укомплектованные восьмиступенчатой коробкой передач.

УСТРОЙСТВО И РАБОТА ДВИГАТЕЛЯ

Общее устройство двигателя показано на продольном (рис. 10) и поперечном (рис. 11) разрезах на примере ЯМЗ-236Н. Остальные двигатели, приведенные в настоящей инструкции, имеют некоторые конструктивные отличия.

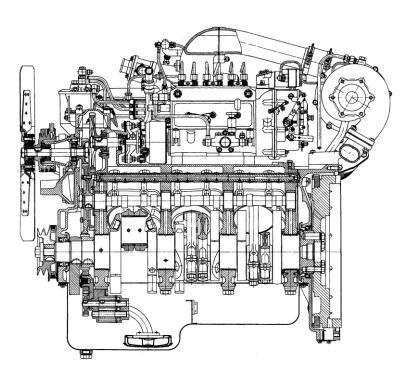


Рис. 10. Продольный разрез двигателя

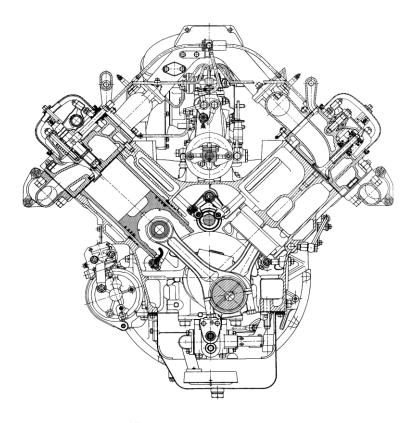


Рис 11 Поперечный разрез двигателя

БЛОК ЦИЛИНДРОВ

Блок цилиндров отлит из низколегированного серого чугуна. Служит основанием для монтажа всех деталей и узлов двигателя. Блок V - образный с углом развала 90° . Правый ряд цилиндров смещен относительно левого вперед на $35\,$ мм, что обусловлено установкой на каждую шатунную шейку коленчатого вала двух шатунов.

Каждое цилиндровое гнездо имеет два соосных цилиндрических отверстия, выполненных в верхней и нижней плитах блока, по которым центрируется гильза цилиндра, в верхней плите имеется кольцевая проточка под бурт гильзы.

В развале блока имеется четыре опорные площадки с крепежными отверстиями для установки топливного насоса высокого давления. На переднем торце блока находится гнездо для подшипников привода топливного насоса.

В приливах (бобышках) на стенках блока имеется сложная система масляных каналов, для подвода смазки к подшипникам распределительного и коленчатого валов, а так же к масляному фильтру и жидкостно-масляному теплообменнику.

Стенки водяной рубашки образуют замкнутый силовой пояс вокруг каждого цилиндрового гнезда и вместе с дополнительными ребрами связывают верхнюю и нижнюю плиты цилиндровой части блока, обеспечивая конструкции необходимую жесткость. В картерных поперечных стенках блока расположено четыре гнезда с вкладышами под коренные шейки коленчатого вала и четыре расточки с бронзовыми втулками, в которых вращается распределительный вал.

Крышки коренных опор крепятся к блоку двумя вертикальными и двумя горизонтальными болтами. Благодаря чему достигается высокая жесткость блока в зоне коленчатого вала. Обработка гнезд под коленчатый вал производится в сборе с крышками, поэтому крышки коренных опор не взаимозаменяемы.

ГОЛОВКА ЦИЛИНДРОВ

Головка цилиндров изготовлена из низколегированного серого чугуна и крепится к блоку шпильками, ввернутыми в блок цилиндров. Шпильки изготовлены из хромоникелевой стали и термически обработаны. Для обеспечения отвода тепла головка цилиндров имеет полость жидкостного охлаждения, сообщающуюся с полостью блока. Для обеспечения подвода топлива к форсунке в боковой поверхности головки имеются отверстия под трубки.

В головке цилиндров размещены клапаны с пружинами, коромысла клапанов, стойки коромысел и форсунки.

Под клапаны газораспределения в головку с натягом установлены седла и направляющие втулки клапанов. Седла впускных клапанов изготовлены из специального чугуна, а седла выпускных — из специального жароупорного сплава. Седла и металлокерамические направляющие втулки клапанов окончательно обрабатываются после их запрессовки в головку.

На двигатели устанавливаются головки цилиндров блочные (общие):

1. Головки цилиндров двигателей ЯМЗ-236НЕ2, ЯМЗ-236БЕ2 блочные на три цилиндра каждая. Привалочная к блоку цилиндров поверхность головки шлифована и имеет в зоне уплотнения гильз цилиндров кольцевые проточки. Уплотнение стыка головки цилиндров, блока и гильзы осуществляется прокладкой, состоящей из единой металлической прокладки на четыре цилиндра, уплотняющей газовый стык, и вставных, удерживаемых шпеньками, резиновых уплотнительных элементов, уплотняющих масляные, водяные И штанговые проходы. Уплотнительные элементы пяти видов в количестве 14 шт. на прокладку (рис. 12).

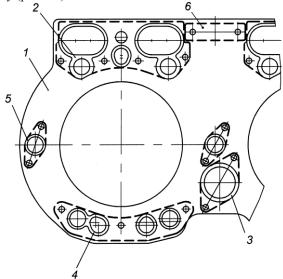


Рис. 12. Схема установки уплотнителей в металлическую прокладку:

1 — металлическая прокладка; 2 — уплотнитель штанговой полости; 3 — уплотнитель слива масла; 4 — уплотнитель подвода воды; 5 — уплотнитель шпильки; 6 — уплотнитель

2. Головки цилиндров на двигателях ЯМЗ-236НЕ,Н,БЕ,Б блочные на три цилиндра каждая. Конструктивно выполнена в основном аналогично предыдущей блочной головке, но в зоне

уплотнения гильз цилиндров нет кольцевых проточек. Стык головки цилиндров, блока и гильзы (рис. 13) уплотняется прокладкой из безасбестового полотна (типа «сэндвич») с окантовками газового стыка цилиндровых отверстий и овальных отверстий для прохода охлаждающей жидкости. В окантовки цилиндровых отверстий вставлены разрезные уплотнительные фторопластовые кольца. Крепление к блоку осуществляется 16-ю шпилькой с шайбами и гайками.

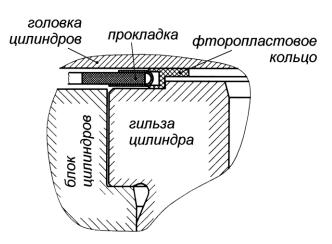


Рис. 13. Схема расположения деталей в месте уплотнения газового стыка

КОЛЕНЧАТЫЙ ВАЛ

Стальной, изготовлен методом горячей штамповки. Шейки вала закалены с нагревом токами высокой частоты. Коленчатый вал имеет четыре коренные опоры и три шатунные шейки. В последних есть закрытые заглушками внутренние полости, где масло подвергается дополнительной центробежной очистке. Эти полости наклонными каналами сообщаются с поперечными каналами в коренных шейках.

Для уравновешивания двигателя и разгрузки коренных подшипников от инерционных сил возвратно-поступательно движущихся масс поршней и шатунов и неуравновешенных центробежных сил на щеках коленчатого вала установлены

противовесы, в сборе с которыми вал балансируется. Кроме того, в систему уравновешивания входят две выносные массы, одна из которых выполнена в виде выемки на маховике, другая представляет собой противовес, установленный на переднем конце коленчатого вала.

Осевая фиксация вала осуществляется четырьмя бронзовыми полукольцами, установленными в выточках задней коренной опоры. Для предохранения от проворачивания нижние полукольца своими пазами входят в штифты, запрессованные в крышку заднего коренного подшипника.

Носок и хвостовик коленчатого вала уплотняются резиновыми самоподжимными манжетами.

На двигатели устанавливается коленчатый вал 236HE-1005009 (маркировка 236H-1005015-У)

Маркируется коленчатый вал на 5-й щеке.

Шейки коленчатого вала могут быть двух номинальных размеров и поэтому возможны следующие варианты маркировки и применение соответствующих им вкладышей.

Маркировка коленчатого вала	236H – 1005015-У	236H – 1005015-У Ш1	236H – 1005015-У К1	236Н 1005015-У Ш1К1
Диаметр коренных шеек, мм	110 _{-0,022}	110 _{-0,022}	109,75 _{-0,022}	109,75 _{-0,022}
Маркировка коренных вкладышей	236-1005170-В и 236-1005171-В	236-1005170-В и 236-1005171-В	236-1005170-В Р1 и 236-1005171-В Р1	236-1005170-В Р1 и 236-1005171-В Р1
Толщина коренного вкладыша, мм	2,965 _{-0,012}	2,965 _{-0,012}	3,090 _{-0,012}	3,090 _{-0,012}
Диаметр шатунных шеек, мм	88,00 _{-0,022}	87,75 _{-0,022}	88,00 _{-0,022}	87,75 _{-0,022}
Маркировка шатунного вкладыша	236-1004058-B	236-1004058-B P1	236-1004058-B	236-1004058-B P1
Толщина шатунного вкладыша, мм	2,490 _{-0,012}	2,615 _{-0,012}	2,490 _{-0,012}	2,615 _{-0,012}

Примечание: Буквы «Н», «У», «Ш», «К» и цифра «1» клеймятся при маркировке ударным способом.

МАХОВИК

Маховик отлит из серого чугуна. Маркирован маховик в выемке на нерабочей поверхности в отливке. На двигатели могут быть установлены маховики следующих видов:

- 1. Маховик под установку на двигатель диафрагменного однодискового сцепления:
 - 236-1005115-К (под зубчатый венец с модулем 4,25);
 - 236-1005115-Н (под зубчатый венец с модулем 3,75).
- 2. Маховик под установку на двигатель двухдискового спепления:
 - 236-1005115-Ж (под зубчатый венец с модулем 4,25);
 - 236-1005115-Л (под зубчатый венец с модулем 3,75).

Все перечисленные выше маховики в сборе с зубчатыми венцами между собой невзаимозаменяемые, причем маховики 236-1005115-К и 236-1005115-Ж (под зубчатый венец с модулем 4,25) стыкуются со стартером модели 2501.3708-01, а маховики 236-1005115-Н и 236-1005115-Л (под зубчатый венец с модулем 3,75) стыкуются со стартером модели 2501.3708-21.

Маховик крепится к коленчатому валу болтами. Под болты устанавливается стальная пластина высокой твердости (одна под все болты). Отсутствие самоотворачивания болтов обеспечивается моментом затяжки 235-255 Н·м (24-26 кгс·м). Для точной фиксации маховика относительно шеек коленчатого вала служат два штифта, при этом, отверстия с маркировкой на маховике и на пластине должны совпадать со смещенным штифтом на коленчатом вале. Смещенный штифт расположен в плоскости первого кривошипа. Маркировка на пластине в виде точки должна быть снаружи.

Двенадцать радиальных отверстий предназначены для провертывания коленчатого вала при регулировках двигателя. Доступ к отверстиям возможен при снятой крышке нижнего люка картера маховика.

ШАТУН

Шатун (рис. 14) - стальной, двутаврового сечения, с косым разъемом нижней головки, со скосами на верхней головке, без масляного канала в стержне.

Шатун окончательно обрабатывается в сборе с крышкой, поэтому крышки шатунов невзаимозаменяемы. На крышке и шатуне со стороны короткого болта выбит порядковый номер цилиндра. На стыке со стороны длинного болта выбиты метки спаренности в виде числа, одинакового для шатуна и крышки.

В нижнюю головку шатуна устанавливаются сменные вкладыши, а в верхнюю — запрессована сталебронзовая втулка 7511.1004052-21 с диаметром отверстия под поршневой палец 52 мм. Втулка обрабатывается после запрессовки в шатун.

На двигатели устанавливаются шатуны 7511.1004045-02 (маркировка на стержне 7511.1004045).

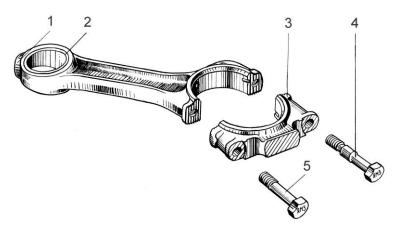


Рис. 14. Шатун:

1 — шатун; 2 — втулка верхней головки; 3 — крышка; 4 — длинный болт крышки; 5 — короткий болт крышки

ВКЛАДЫШИ

Вкладыши коренных подшипников коленчатого вала и нижней головки шатуна (рис. 15) – сменные, тонкостенные, имеют стальное основание и рабочий слой из свинцовистой бронзы.

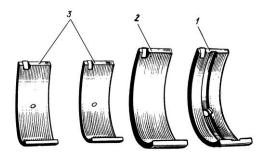


Рис. 15. Вкладыши подшипников коленчатого вала:

1 – верхний вкладыш коренного подшипника; 2 – нижний вкладыш коренного подшипника; 3 – вкладыши нижней головки шатуна

Верхний и нижний вкладыши коренного подшипника коленчатого вала не взаимозаменяемы. В верхнем вкладыше имеются отверстие для подвода масла и канавка для его распределения.

Вкладыши нижней головки шатуна взаимозаменяемы.

ГИЛЬЗА, ПОРШЕНЬ, ПОРШНЕВЫЕ И УПЛОТНИТЕЛЬНЫЕ КОЛЬЦА ГИЛЬЗА ЦИЛИНДРОВ

Гильзы цилиндров – «мокрого» типа, изготавливаются из специального чугуна. Гильзы устанавливаются своими посадочными поясами в расточки блока цилиндров и сверху прижимаются через бурт и прокладку головками цилиндров. Выступание бурта гильзы над поверхностью блока цилиндров:

ЯМЗ-236НЕ2, БЕ2 —
$$1.6^{+0.035}_{-0.065}$$
 мм. ЯМЗ-236Н, Б, НЕ, БЕ — $0.1^{+0.065}_{-0.035}$ мм.

На двигатели ЯМЗ-236НЕ,Н, ЯМЗ-236БЕ,Б устанавливается гильза 236-1002021-Б2. Поверхности гильзы фосфатированные. Фосфатированный слой улучшает притирочные характеристики, увеличивает износостойкость поверхности, снижает вероятность образования натира. Внешнее отличие фосфатированной гильзы от нефосфатированной - значительно более темный (от темносерого до черного) цвет наружной поверхности.

Верхний торец бурта гильзы выполнен выступающей частью к внутренней поверхности гильзы (под прокладку газового стыка из безасбестового полотна) с высотой бурта 12,1 мм.

В нижней части гильзы выполнены три канавки под антикавитационное и уплотнительные резиновые кольца.

На двигатели ЯМЗ-236HE2, ЯМЗ-236БЕ2 устанавливается фосфатированная гильза 7511.1002021-10.

Верхний торец бурта выполнен выступающей частью к наружной поверхности (под металлическую прокладку газового стыка) с высотой бурта 9,6 мм.

С 01.08.2012 аннулирована канавка на верхнем посадочном поясе гильзы в связи с применением герметика, вместо резинового кольца. Герметичность водяной полости по верхнему посадочному поясу гильзы обеспечивается нанесением на опорную поверхность выточки блока цилиндров под гильзу замкнутого слоя герметика «Локтайт-5910» или «Анатерм-505Д». При замене гильзы цилиндра, перед нанесением герметика, необходимо тщательно очистить посадочное место в блоке цилиндров от герметика, обезжирить его и высущить.

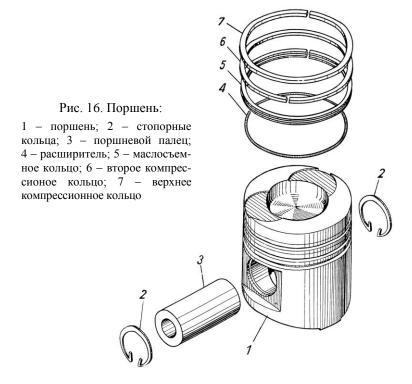
Допускается при замене старых гильз уплотнять соединение кольцом 150-155-25-2-5 (код 25 3111 6594) из комплекта гильзапоршень для запасных частей, которое устанавливается в канавку на верхней посадочной поверхности гильзы.

В нижней части гильзы выполнены три канавки под антикавитационное и уплотнительные резиновые кольца.

По наименьшему значению внутреннего диаметра гильзы цилиндров разделены на размерные группы:

Маркировка	Наименьший внутренний диаметр, мм
A	130,00-130,02
Б	130,02-130,04
Ж	130,04-130,06

Размерная группа маркируется на нерабочей поверхности бурта гильзы.


ПОРШЕНЬ

Поршни (рис. 16) отлиты из эвтектического алюминиевокремнистого сплава. Охлаждение поршня маслом производится из неподвижной форсунки. В днище поршня выполнена камера сгорания. На двигатели ЯМЗ-236НЕ2, ЯМЗ-236БЕ2 устанавливаются поршни 7511.1004015-10 с 3-я канавками под поршневые кольца (две под компрессионные и одна под маслосъемное).

Канавка под верхнее компрессионное кольцо выполнена во вставке из жаропрочного чугуна (типа «нирезист»).

Камера сгорания смещена на 5 мм внутрь развала блока цилиндров, боковая поверхность с поднутрением, имеет вытеснитель. На днище имеются выточки под клапаны газораспределения. Высота от днища до оси пальца составляет 85 мм. Диаметр отверстия под поршневой палец 52 мм.

На двигатели ЯМЗ-236НЕ,Н, ЯМЗ-236БЕ,Б устанавливаются поршни 7511.1004015-20, отличающиеся от 7511.1004015-10 отсутствием выточек под клапаны газораспределения и глубиной камеры сгорания (см. рис. 17).

По величине размера юбки на расстоянии 119 мм от днища в плоскости, перпендикулярной оси отверстия под палец, поршни разделены на размерные группы:

	Диаметр юбки поршня, мм	
Маркировка	Обозначение поршней	
	7511.1004015-10; 7511.1004015-20	
АНБ	129,85-129,87	
БНБ	129,87-129,89	
ЖНБ	129,89-129,91	

Размерная группа маркируется на днище поршня.

Для обеспечения точной посадки при сборке поршень и гильза должны подбираться из одних размерных групп.

В разные цилиндры двигателя допускается установка комплектов гильза-поршень разных размерных групп.

Маркировка гильзы	Маркировка поршня
A	АНБ
Б	БНБ
Ж	ЖНБ

ПОРШНЕВЫЕ КОЛЬЦА

Поршневые кольца изготовлены из специального чугуна, разрезные, хромированные, устанавливаются в канавки поршня. В зависимости от выполняемой задачи в рабочем процессе кольца имеют различную конструкцию и устанавливаются на поршень комплектно в определенном порядке.

На поршни устанавливается трехколечный комплект колец 7511.1004002, где:

- первое компрессионное кольцо имеет в сечении двухстороннюю трапецию со смещенной вниз бочкообразной хромированной рабочей поверхностью. Обозначение кольца 7511.1004030.
- второе компрессионное кольцо прямоугольного сечения, минутное с покрытием хромом, с проточкой на нижнем торце с внутренней стороны.
 Обозначение кольца 7511.1004032-01.

 маслосъемное кольцо коробчатого сечения с хромированными рабочими кромками и витым пружинным расширителем.

Обозначение кольца 7511.1004034.

При установке поршневых колец обращать особое внимание на правильность их расположения. Слово " \mathbf{Bepx} " должно быть обращено к днищу поршня.

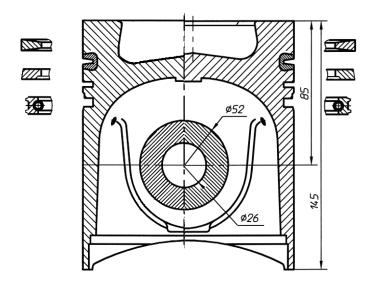


Рис. 17. Поршень, поршневые кольца, палец: слева – поршень 7511.1004015-20, кольца и палец к нему; справа – поршень 7511.1004015-10, кольца и палец к нему

ПОРШНЕВОЙ ПАЛЕЦ

Поршневой палец — пустотелый, плавающего типа с азотированной (обозначение 7511.1004020) или цементированной (обозначение 7511.1004020-03) наружной поверхностью. Палец с наружным диаметром 52 мм устанавливается в отверстие в поршне. Осевое перемещение пальца ограничивается стопорными кольцами, устанавливаемыми в специальные канавки в бобышках поршня.

ВАРИАНТЫ КОМПЛЕКТОВАНИЯ ГИЛЬЗА — ПОРШЕНЬ — КОЛЬЦА ПОРШНЕВЫЕ

По конструктивным особенностям:

Гильза	Комплект колец	Поршень	
Двигатели ЯМЗ-236НЕ2, ЯМЗ-236БЕ2			
Фосфатированная 7511.1002021-10 (под металлическую прокладку головки цилиндров)	Трёхколечный комплект 7511.1004002	Со смещенной камерой сгорания с выточками под клапаны 7511.1004015-10	
Двигатели ЯМЗ-236НЕ,Н, ЯМЗ-236БЕ,Б			
Фосфатированная 236-1002021-Б2 (под прокладку головки цилиндров из безасбестового полотна)	Трёхколечный комплект 7511.1004002	Со смещенной камерой сгорания без выточек под клапаны 7511.1004015-20	

В эксплуатации при ремонте работавших двигателей допустима установка новых поршневых колец в старую гильзу цилиндра, находящуюся в исправном состоянии

МЕХАНИЗМ ГАЗОРАСПРЕДЕЛЕНИЯ

Механизм газораспределения—верхнеклапанный с нижним, расположением распределительного вала и приводом клапанов через толкатели, штанги и коромысла. Основными деталями механизма газораспределения являются: распределительный вал с шестерней привода и подшипниками, толкатели, оси толкателей, штанги, коромысла с регулировочными винтами, оси коромысел, клапаны, пружины клапанов с деталями крепления и направляющие втулки клапанов (рис. 18).

Привод клапанов осуществляется от распределительного вала через роликовые толкатели 2, трубчатые штанги 3 и коромысла 12 с регулировочными винтами 14.

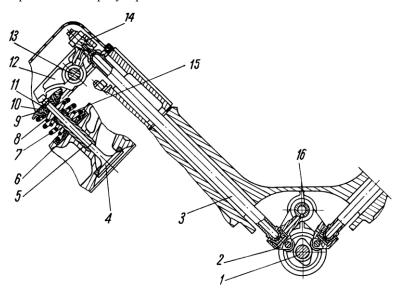


Рис. 18. Механизм газораспределения:

1 — распределительный вал; 2 — толкатель; 3 — штанга толкателя; 4 — клапан; 5 — направляющая втулка клапана; 6 — шайба пружин клапана; 7 — наружная пружина; 8 — внутренняя пружина; 9 — тарелка пружин клапана; 10 — втулка тарелки пружин клапана; 11 — сухарь клапана; 12 — коромысло клапана; 13 — ось коромысла; 14 — регулировочный винт коромысла; 15 — уплотнительная манжета клапана; 16 — ось толкателей

Распределительный вал — стальной, штампованный, опорные шейки и кулачки для повышения износостойкости закалены ТВЧ. Расположен в верхней части картера блока цилиндров и приводится во вращение от переднего конца коленчатого вала через пару косозубых шестерен. Шестерни устанавливаются по меткам, выбитым на торцах зубчатых венцов. Подшипниками распределительного вала служат бронзовые втулки, запрессованные в расточки блока цилиндров. Продольное смещение вала ограничивается стальным упорным фланцем, установленным между ступицей шестерни и передней опорной шейкой вала. После установки распределительного вала с шестерней в блок цилиндров фланец крепится к переднему торцу блока болтами с пружинными шайбами. Осевой люфт вала 0,08...0,21 мм.

Толкатели – стальные, штампованные, качающегося типа с роликом для контакта с кулачками распределительного вала. Ролик установлен на оси, запрессованной в проушины толкателя и закерненной с двух сторон от выпадения. Между осью и роликом установлена «плавающая» втулка из подшипниковой стали. В ступицу толкателя запрессованы две тонкостенные бронзовые втулки, пространство между втулками служит масляной полостью для подвода масла от оси толкателей к штангам. Для сопряжения со штангой в расточку толкателя запрессована стальная закаленная пята.

Оси толкателей. Толкатели подвешены на трубчатых осях, установленных в расточках блока цилиндров в чугунных втулках, из которых передняя запрессована в блок, остальные установлены с зазором. От продольного перемещения оси стопорятся спереди выступом упорного фланца распределительного вала, сзади — картером маховика.

Штанги толкателей – стальные, трубчатые с высаженными на концах сферическими поверхностями. Для повышения износостойкости сферические поверхности закалены ТВЧ.

Коромысла клапанов – стальные, штампованные, с запрессованной в ступицу тонкостенной бронзовой втулкой. На конце длинного плеча коромысла для контакта с клапаном выполнена пята с цилиндрической опорной поверхностью, закаленная ТВЧ. Короткое плечо коромысла оканчивается бобышкой с резьбовым отверстием М12х1, в которое ввернут

регулировочный винт со сферическим гнездом под штангу на одном конце и пазом под отвертку на другом конце. Винт стопорится от отворачивания гайкой.

Коромысла установлены на индивидуальные оси и застопорены от спадания стопорными кольцами с упорными шайбами. Оси коромысел устанавливаются на головку цилиндров по двум цилиндрическим штифтам, запрессованным в оси со стороны опорной поверхности и крепятся к головке цилиндров шпильками с гайками.

Впускные и выпускные клапаны изготовлены из специальных жаропрочных сталей. Рабочая фаска выпускного клапана наплавлена жаропрочным сплавом типа «стеллит», к стержню приварен наконечник из легированной стали. Для повышения износостойкости торцы стержней впускных и выпускных клапанов закалены ТВЧ. Впускные клапаны двигателей с индивидуальными головками цилиндров отличаются от клапанов двигателей с общими головками цилиндров уменьшенным диаметром тарелки, выпускные клапаны одинаковы.

Клапаны перемещаются в металлокерамических направляющих втулках, запрессованных в головку цилиндров. На втулки впускных клапанов установлены уплотнительные манжеты.

Клапаны поджимаются к седлам двумя цилиндрическими винтовыми пружинами, имеющими разное направление навивки. Пружины одним концом упираются в опорные шайбы, установленные в цековки на головке цилиндров, а другим — в тарелку пружин, закрепленную на стержне клапана с помощью промежуточной втулки и двух конических сухарей. Наличие втулки между тарелкой пружин и клапаном способствуют повороту клапанов при работе двигателя и обеспечивает равномерный износ фасок и стержней клапанов в процессе эксплуатации.

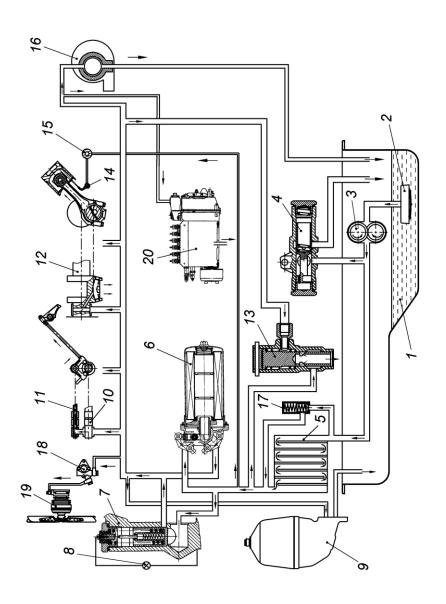


Рис. 19. Схема системы смазки двигателя с односекционным масляным насосом и жилкостно-масляным теплообменником:

1-масляный картер; 2-маслозаборник; 3-масляный насос; 4-редукционный клапан; 5-жидкостно-масляный теплообменник; 6-фильтр очистки масла; 7-перепускной клапан; 8-сигнальная лампа фильтра; 9-фильтр центробежной очистки масла; 10-распределительный вал; 11-ось толкателей; 12-коленчатый вал; 13-дифференциальный клапан; 14-форсунка охлаждения поршней; 15-дроссель; 16-турбокомпрессор; 17-перепускной клапан теплообменника; 18-включатель привода вентилятора; 19-привод вентилятора; 20-ТНВД

СИСТЕМА СМАЗКИ

Система смазки двигателя – смешанная, с «мокрым» картером (рис. 19)

Масляный насос (рис. 20) через всасывающую трубу с заборником засасывает масло из картера и подает его в систему через, последовательно включенный жидкостно-масляный теплообменник (при наличии). В корпусе теплообменника (пластинчатого) установлен перепускной клапан. Если разность давлений до и после теплообменника достигает 274±40 КПа (2,8±0,40 кгс/см²), клапан открывается и часть масла подается непосредственно в масляную магистраль.

Далее через трубку и каналы в блоке часть масла через втулку (дроссель с калиброванным отверстием) поступает к форсункам охлаждения поршней и затем сливается в картер. На двигатели ЯМЗ-236Н,Б вместо дросселя установлен клапан прекращающий подачу масла к форсункам при давлении масла в системе смазки ниже 300...350 кПа (3,0...3,5 кгс/см²). Другая часть поступает в масляный фильтр (рис. 21). В корпусе фильтра установлен перепускной клапан. Когда разность давлений до и после фильтра достигает 200...250 кПа $(2,0...2,5 \text{ кгс/см}^2)$, клапан открывается неочищенного масла часть непосредственно в масляную магистраль. К моменту начала открытия перепускного клапана произойдет замыкание подвижного и неподвижного контактов сигнализатора. В этот момент в кабине водителя загорается сигнальная лампочка, соединенная с клеммой сигнализатора. Такое повышение давления может произойти тогда, когда засорен элемент фильтра или масло имеет большую вязкость (например, при пуске двигателя в холодное время года).

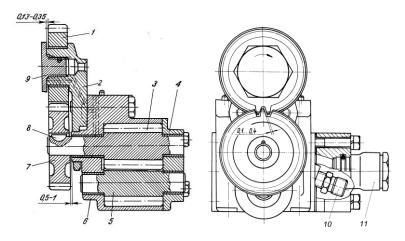


Рис. 20. Масляный насос:

1-промежуточная шестерня; 2-ось промежуточной шестерни; 3-вал-шестерня ведущая; 4-крышка корпуса; 5-вал-шестерня ведомая; 6-корпус; 7-шестерня привода; 8-шпонка; 9-фланец упорный; 10-штуцер (присутствует только на двигателях без водомасляного теплообменника); 11-редукционный клапан

Фильтрующий элемент масляного фильтра изготавливается либо из нетканого материала, натянутого на металлический каркас, либо из специальной фильтровальной бумаги.

Из фильтра масло поступает в центральный масляный канал, а оттуда через систему каналов в блоке-к подшипникам коленчатого и распределительного валов. От подшипников коленчатого вала через масляные каналы в коленчатом валу и шатунах масло подается к подшипникам верхних головок шатунов. От распределительного вала масло пульсирующим потоком направляется в ось толкателей, а оттуда по каналам толкателей, полостям штанг и коромысел поступает ко всем трущимся парам привода клапанов, а по наружной трубе — к подшипникам турбокомпрессора, регулятора частоты вращения и топливного насоса высокого давления.

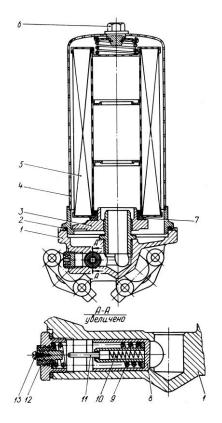


Рис. 21. Масляный фильтр: 1-корпус фильтра; 2-прокладка колпака; 3-замковая крышка; 4-колпак фильтра; 5-фильтрующий элемент; 6-головка колпака; 7-прокладка фильтрующего элемента; 8-плунжер клапана; 9-пружина клапана; 10-пружина сигнализатора; 11-подвижный контакт сигнализатора; 12-неподвижный контакт; 13-клемма

Под лавлением смазывается также подшипник промежуточной шестерни привода масляного насоса. Шестерни привода агрегатов, кулачки распределительного вала. подшипники качения, цилиндров гильзы смазываются разбрызгиванием.

В корпусе насоса установлен редукционный клапан, перепускающий масло обратно в картер при давлении на выходе из насоса свыше: 236HE2,БЕ2,НЕ,БЕ: $700...750 (7,0...7,5 \text{ krc/cm}^2)$; 236H,Б: $700...800 \text{ кПа} (7,0...8,0 \text{ krc/cm}^2)$.

Для стабилизации давления в систему смазки двигателя включен дифференциальный клапан, отрегулированный на начало открытия: 236He2,Бe2,He,Бe: $490...520 (4,9...5,2 \text{ krc/cm}^2)$; 236H,Б: $520...560 \text{ к}\Pi a (5,2...5,6 \text{ krc/cm}^2)$.

Фильтр центробежной очистки масла (рис. 22) включен параллельно после фильтра очистки масла и пропускает до 10% масла, проходящего через систему смазки. Очищенное масло сливается в картер. Дополнительная центробежная очистка масла производится и в полостях шатунных шеек коленчатого вала.

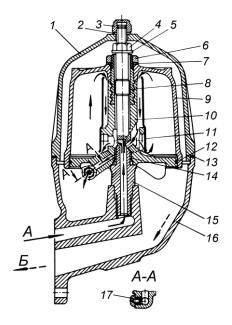


Рис. 22. Фильтр центробежной очистки масла:

1-колпак фильтра; 2, 7шайбы; 3-колпачковая гайка; 4-гайка крепления ротора; 5-упорная шайба; 6-гайка ротора; 8, 14втулки ротора; 9-колпак ротора; 10-ротор; отражатель; 12-уплотникольцо; тельное 13прокладка колпака; 15-ось ротора; 16-корпус фильтра; 17-сопло ротора; А-из системы под давлением; Б-слив масла в картер

Радиаторная секция двухсекционного масляного насоса подает масло к установленному на машине воздушно-масляному теплообменнику (ВМТ). Охлажденное в теплообменнике масло сливается в картер. Предохранительный клапан радиаторной секции открывается при давлении на выходе из насоса свыше $100...130~\mathrm{k\Pi a}~(1,0...1,3~\mathrm{krc/cm^2})$. На двигателях с ВМТ может быть применен односекционный масляный насос с разделением потока масла на ВМТ через дроссель с предохранительным клапаном $100...130~\mathrm{k\Pi a}~(1,0...1,3~\mathrm{krc/cm^2})$.

Контроль давления масла осуществляется в центральном масляном канале.

СИСТЕМА ПИТАНИЯ

Топливоподающая аппаратура двигателя — разделенного типа. Она состоит из топливного насоса высокого давления со всережимным регулятором частоты вращения и встроенным корректором для корректирования подачи топлива, топливоподкачивающим насосом, муфтой опережения впрыска или без нее, форсунок, фильтров грубой и тонкой очистки топлива, топливопроводов низкого и высокого давления (рис. 23).

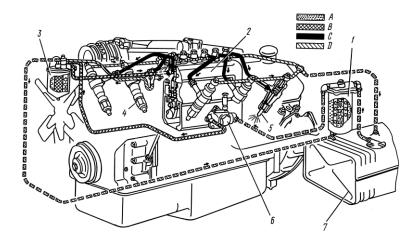


Рис. 23. Схема системы питания:

А-всасывающая магистраль; В-низкое давление; С-высокое давление; D-слив излишков топлива в бак; 1-фильтр грубой очистки топлива; 2-топливный насос высокого давления; 3-фильтр тонкой очистки топлива; 4-форсунка; 5-распылитель форсунки; 6-топливоподкачивающий насос; 7-топливный бак

Из бака через фильтр грубой очистки топливо засасывается топливоподкачивающим насосом и подается в фильтр тонкой очистки и далее к топливному насосу высокого давления. Топливный насос в соответствии с порядком работы цилиндров подает топливо по топливопроводам высокого давления к форсункам, которые распыливают его в цилиндрах двигателя. Через перепускной клапан в топливном насосе и жиклер в

фильтре тонкой очистки излишки топлива, а вместе с ними и попавший в систему воздух отводятся по топливопроводу в топливный бак. Просочившееся в полость пружины форсунки топливо отводится по сливному трубопроводу в бак.

ТОПЛИВНЫЙ НАСОС ВЫСОКОГО ДАВЛЕНИЯ

Насос расположен в развале двигателя между рядами цилиндров и имеет шестеренчатый привод. Топливный насос высокого давления многосекционный. Число секций равно шести по числу цилиндров двигателя.

На двигатели устанавливаются топливные насосы высокого давления различных моделей (см. раздел «Техническая характеристика»), имеющие конструктивные и регулировочные отличия (сведения о V-образных топливных насосах моделей 323.5, 323.5-10, 324.5, 324.5-10, 324.5-10.01 см. в приложении 6).

ТОПЛИВНЫЙ НАСОС ВЫСОКОГО ДАВЛЕНИЯ МОД. 133-20, 133-30

Топливный насос высокого давления состоит из секций, отдельных насосных элементов, размещенных в общем корпусе. Число секций равно шести по числу цилиндров двигателя. Устройство секции насоса высокого давления показано на рис. 24.

В корпусе 1 насоса установлены корпуса секций 15 с плунжерными парами, нагнетательными клапанами и штуцерами 11, к которым присоединяются топливопроводы высокого давления. Нагнетательный клапан 9 и седло клапана 8, а также плунжер 6 с втулкой 7 являются прецизионными парами, которые могут заменяться только комплектно. Втулка плунжера стопорится в определенном положении штифтом, запрессованным в корпус секции.

Плунжер 6 приводится в движение от кулачкового вала 19 через роликовый толкатель 17. Пружина 3 через нижнюю тарелку 2 постоянно прижимает ролик толкателя к кулачку, От разворота толкатели, имеющие лыски на боковых поверхностях, удерживаются фиксаторами, запрессованными в корпус насоса.

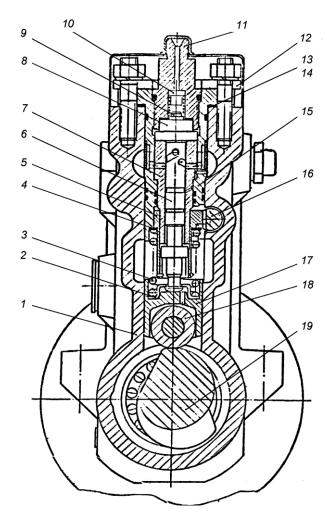


Рис. 24. Секция топливного насоса высокого давления:

1-корпус насоса; 2-нижняя тарелка толкателя; 3-пружина толкателя; 4-верхняя тарелка толкателя; 5-втулка поворотная; 6-плунжер; 7-втулка плунжера; 8-седло клапана нагнетательного; 9- нагнетательный клапан; 10-упор клапана; 11-штуцер; 12-фланец нажимной; 13,14-прокладки; 15-корпус секции; 16-рейка; 17-толкатель; 18- ролик толкателя; 19-кулачковый вал

Конструкция плунжерной пары позволяет дозировать топливо изменением момента начала и конца подачи, Для изменения количества и момента начала подачи топлива плунжер во втулке поворачивается поворотной втулкой 5, входящей в зацепление с рейкой 16. Регулировка равномерности подачи топлива на максимальном режиме каждой секцией насоса производится разворотом корпуса секции при ослабленных гайках крепления секций. Изменение начала подачи в зависимости от ее величины (нагрузки двигателя) обеспечивается управляющими кромками, выполненными на торце плунжера.

Работа секции протекает следующим образом. При движении плунжера 6 вниз под действием пружины 3 топливо под небольшим давлением, создаваемым топливоподкачивающим насосом, поступает через продольный канал в корпусе в надплунжерное пространство. При движении плунжера вверх топливо через нагнетательный клапан поступает в топливопровод высокого давления и перепускается в топливоподводящий канал до тех пор, пока торцовая кромка плунжера не перекроет впускное отверстие втулки. При дальнейшем движении плунжера вверх давление в надплунжерном пространстве резко возрастает. Когда давление достигнет такой величины, что превысит усилие, создаваемое пружиной форсунки, игла форсунки поднимется и начнется процесс впрыскивания топлива в цилиндр двигателя. При движении плунжера вверх наступает момент, когда спиральные кромки плунжера открывают два отсечных отверстия втулке, что вызывает резкое падение давления топливопроводе. При этом нагнетательный клапан, опускаясь в седло под действием пружины, увеличивает объем топливопроводе между форсункой и клапаном. Этим достигается более четкое окончание впрыскивания топлива и разгрузка топливопровода высокого давления.

На внутренней поверхности втулки 7 плунжера имеется кольцевая канавка, а в стенке отверстие для отвода топлива, просочившегося через зазор в плунжерной паре. Уплотнение между втулкой плунжера и корпусом секции, корпусом секции и корпусом насоса осуществляется резиновыми кольцами. Из полости вокруг втулки плунжера просочившееся топливо поступает по пазу на втулке плунжера в полость низкого давления корпуса насоса и далее через перепускной клапан и трубопровод в топливный бак.

В нижней части корпуса насоса расположен кулачковый вал. Кулачковый вал вращается в роликовых конических подшипниках и промежуточной опоре. Кулачковый вал установлен с натягом $0.01-0.07\,$ мм, который обеспечивается регулировочным и прокладками, установленными между крышкой подшипника и корпусом насоса.

Топливный насос высокого давления в сборе с регулятором частоты вращения, топливоподкачивающим насосом и демпферной муфтой изображен на рис. 25.

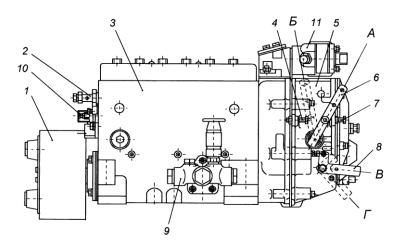


Рис. 25. Топливный насос высокого давления:

1-демпферная муфта; 2-перепускной клапан; 3-топливный насос высокого давления; 4-болт ограничения максимальной частоты вращения; 5-регулятор частоты вращения; 6-рычаг управления регулятором; 7-болт ограничения минимальной частоты вращения; 8-скоба останова; 9-топливоподкачивающий насос; 10-болт регулировки пусковой подачи; 11-корректор подачи топлива по наддуву.

А-положение рычага при минимальной частоте вращения холостого хода; Б-положение рычага при максимальной частоте вращения холостого хода; В-положение скобы при работе; Γ -положение скобы при выключенной подаче

Рейка топливного насоса перемещается в направляющих втулках, запрессованных в корпусе насоса. На выступающем из насоса конце рейки имеется болт 10, которым она упирается в защитный колпачок при положении рейки перед пуском двигателя. При вывертывании болта из рейки пусковая подача уменьшается.

Смазка топливного насоса - централизованная, от масляной системы двигателя. Масло для насоса подводится к наддувному корректору, откуда, сливаясь в полость регулятора, поступает в насос.

РЕГУЛЯТОР ЧАСТОТЫ ВРАШЕНИЯ

Регулятор частоты вращения (рис. 26, 27) механический всережимный центробежного типа предназначен для поддержания заданного водителем скоростного режима работы двигателя путем автоматического изменения количества подаваемого топлива в зависимости от изменения нагрузки на двигатель.

Кроме того, регулятор ограничивает максимальную частоту вращения двигателя, при запуске автоматически увеличивает подачу топлива, что значительно улучшает пусковые качества двигателя, обеспечивает работу двигателя в режиме холостого хода. Регулятор имеет устройство для выключения подачи топлива в любой момент независимо от режима работы двигателя. Автоматически поддерживая скоростной режим при изменяющихся нагрузках, регулятор обеспечивает экономичную работу двигателя.

Регулятор расположен на заднем торце топливного насоса высокого давления. На конусе кулачкового вала находится веющая шестерня 27 с демпфирующим устройством. Вращение от вала насоса на ведущую шестерню передается через резиновые сухари 28. Ведомая шестерня выполнена как одно целое с валиком 29 державки грузов и установлена на двух подшипниках в стакан 30. на валик напрессована державка грузов 25, на осях 26 которой находятся грузы 24. Грузы своими роликами упираются в торец муфты 23, которая через упорный подшипник и пяту 22 передает усилие грузов рычагу регулятора 17, подвешенному вместе с двуплечим рычагом 5 на общей оси 2.

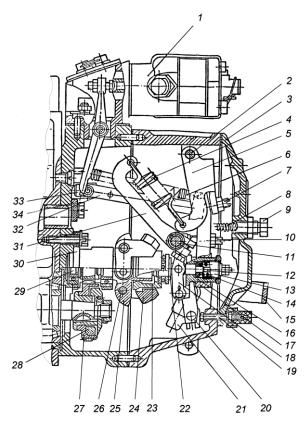


Рис. 26. Регулятор частоты вращения:

1-корректор подачи топлива по наддуву; 2-ось двуплечего рычага; 3-крышка смотрового люка; 4-пружина регулятора; 5двуплечий рычаг; 6-пружина рычага рейки; 7-винт двуплечего рычага; 8-буферная пружина; 9-корпус буферной пружины; 10регулировочный болт; 11-вал рычага пружины; отрицательный корректор; 13-корпус пружины корректора; 14пружина отрицательного корректора; 15-скоба кулисы; 16втулка отрицательного корректора; 17-рычаг регулятора; 18рычаг отрицательного корректора; 19-винт подрегулировки мощности; 20-рычаг рейки; 21-кулиса; 22-пята; 23- муфта грузов; 24-грузы регулятора; 25-державка грузов; 26- ось грузов; 27-ведущая шестерня; 28-сухари; 29-валик державки грузов; 30стакан; 31-рычаг пружины 32-тяга рейки; 33-рейка; 34-упор

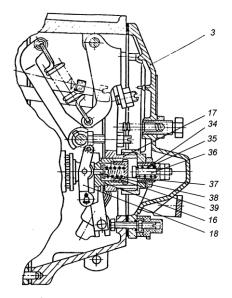


Рис. 27. Регулятор частоты вращения:

3-крышка смотрового люка; 16-втулка отрицательного корректора; 17-рычаг регулятора; 18-рычаг отрицательного корректора; 34-корпус пружины корректора; 35-пружина положительного корректора; 36-положительный корректор; 37-пробка; 38-пружина отрицательного корректора; 39-упор пружины

Муфта 23 с упорной пятой 22 в сборе одним концом опирается на направляющую поверхность державки, а за второй конец подвешена на рычаге 18 корректора, закрепленном на втулке 16 рычага регулятора. Пята муфты грузов связана через узел отрицательного корректора с рычагом рейки 20 и через тягу 32 с рейкой топливного насоса. К верхней части рычага рейки присоединена пружина 6 рычага рейки, удерживающая рейку насоса в положении, соответствующем максимальной подаче, что обеспечивает увеличенную подачу топлива при пуске двигателя. В нижнюю часть рычага рейки запрессован палец, который входит в отверстие ползуна кулисы 21. Вал 11 рычага регулятора жестко связан с рычагом управления 6 (рис. 25) и рычагом пружины 31. Перемещение рычага управления регулятором ограничивается двумя болтами 4 и 7 (рис. 25). За рычаг пружины

31 (коротким зацепом) (рис. 26) и двуплечий рычаг 5 (длинным зацепом) зацеплена пружина регулятора 4, усилие которой передается с двуплечего рычага на рычаг регулятора через винт регулятора двуплечего рычага. рычаг В регулировочный болт 10, который упирается в вал рычага пружины и служит для регулировки номинальной подачи топлива. В нижней части рычаг регулятора снабжен боковой накладкой, удерживающей втулку 16 обратного корректора и упорную пяту 22 от проворота. Кроме того, хвостовик болта крепления боковой накладки, входя в боковой продольный паз втулки предохраняет ее от выпадания из расточки рычага. Упор 34, закрепленный на корпусе регулятора, не позволяет рычагу пружины 31 опасно приближаться к вращающейся державке грузов. В нижней части рычага регулятора расположены корректирующие устройства, предназначенные формирования внешней скоростной характеристики ТНВД и крутящего момента двигателя. ТНВД 133-20 оснащен отрицательным корректором (рис. 26), а ТНВД 133-30 комбинированным корректором (рис. 27). Для полного выключения подачи топлива служит механизм останова, состоящий из кулисы 21, скобы 15 и возвратной пружины. Во время работы кулиса прижата усилием возвратной пружины к регулировочному винту 19.

Сзади крышка регулятора закрыта крышкой 3 смотрового люка с буферным устройством, состоящим из корпуса 9 и пружины 8. Пружина, ограничивая перемещение рычага 17 регулятора, обеспечивает устойчивую работу двигателя на холостом ходу.

Принцип действия регулятора частоты вращения основан на взаимодействии центробежных сил грузов и усилий пружин с различной предварительной деформацией.

На неработающем двигателе грузы регулятора находятся в сведенном положении, а рейка 33 под действием пружины 6 рычага рейки находится в положении максимальной подачи (крайнее левое положение).

При пуске двигателя, когда частота вращения коленчатого вала достигнет 460...500 мин⁻¹ (рычаг управления упирается в болт ограничения минимального скоростного режима), грузы регулятора под действием центробежной силы преодолевают сопротивление пружины рычага рейки и сдвигают через муфту

грузов 23 рычаг рейки 32 до упора втулки 16 (рис. 27) отрицательного корректора в положительный корректор 36. Далее, преодолевая сопротивление буферной пружины 8, грузы перемещают вправо всю систему рычагов и рейку ТНВД до установления цикловой подачи секции ТНВД, соответствующей минимальному скоростному режиму (режиму минимальной частоты вращения холостого хода).

При нажатии на педаль управления рычаг управления регулятором и жестко связанный с ним рычаг 31 пружины поворачиваются на определенный угол, что приводит к увеличению натяжения пружины регулятора. Под воздействием пружины рычаг 17 регулятора перемещает систему рычагов, муфту грузов и рейку в сторону увеличения подачи, и обороты коленчатого вала двигателя возрастают. Это происходит до тех пор, пока центробежная сила грузов не уравновесит силу натяжения пружины 4, т.е. до устойчивого режима работы двигателя. Таким образом, каждому положению рычага управления регулятором соответствует определенное число оборотов двигателя.

При уменьшении суммарного момента сопротивления движению автомобиля, частота вращения коленчатого вала двигателя увеличивается. В этом случае центробежная сила грузов возрастает. Грузы расходятся и, преодолевая усилие пружины регулятора, перемещают муфту грузов 23 и пяту 22. При этом система рычагов и рейка перемещаются в сторону уменьшения подачи (вправо) до тех пор, пока не установится оборотов двигателя, заданное положением рычага управления, т.е. пока не наступит равновесие межлу центробежной силой грузов и силой пружины регулятора.

При увеличении суммарного момента сопротивления движению автомобиля частота вращения коленчатого вала уменьшается, следовательно, уменьшается и центробежная сила грузов регулятора. Усилием пружины 4 регулятора система рычагов, пята и муфта грузов переместятся влево и передвинут рейку влево, в сторону увеличения подачи. Подача топлива секциями увеличивается до тех пор, пока частота вращения коленчатого вала двигателя не достигнет величины, заданной положением рычага управления регулятором.

Остановка двигателя осуществляется поворотом скобы кулисы 15 вниз. При этом кулиса 21 и нижний конец рычага 20

рейки поворачиваются влево, рейка насоса выдвигается в крайнее положение, и подача топлива прекращается.

Корректоры, установленные на рычаге 17 регулятора (рис. 26 и 27), обеспечивают изменение цикловой подачи в зависимости от частоты вращения коленчатого вала.

Положительный корректор 34, 35, 36 (рис. 27) обеспечивает постоянное увеличение подачи топлива при уменьшении частоты вращения коленчатого вала двигателя от номинальной до 1300+50 мин⁻¹ и тем самым обеспечивают тяговую характеристику двигателя в зоне максимального крутящего момента.

При частоте вращения коленчатого вала, соответствующей номинальной, центробежная сила грузов превышает усилие пружины предварительной затяжки положительного 35 корректора, и пята через пробку 37, втулку 16 отрицательного корректора и корпус 34 положительного корректора упирается в главный рычаг регулятора. При снижении частоты вращения кулачкового вала ТНВД усилие пружины прямого корректора становится достаточным для преодоления силы грузов. При этом положительный корректор 36 независимо от положения рычага управления 17 выдвигается из корпуса и, перемещая втулку обратного корректора, муфту грузов и систему рычагов, сдвигает рейку ТНВД в сторону увеличения подачи. Частота вращения кулачкового вала ТНВД, соответствующая моменту начала работы положительного корректора, T.e. моменту выдвижения корректора из его корпуса, регулируется предварительным сжатием пружины 35 корректора.

Чем меньше частота вращения, тем больше выступание положительного корректора из корпуса и соответственно больше цикловая подача топлива. При частоте вращения коленчатого вала 1300±50 мин⁻¹ положительный корректор обеспечивает приращение максимальное шикловой подачи Полученные значения цикловой подачи соответствуют максимальной величине выступания корректора из корпуса. Эта величина устанавливается в процессе регулирования ТНВД. При дальнейшем уменьшении частоты вращения коленчатого вала двигателя правильно отрегулированный корректор не оказывает влияния на положение рейки ТНВД и не изменяет величину цикловой подачи топлива.

Отрицательный корректор ТНВД 133-30 (16, 18, 37, 38, 39 рис. 27), обеспечивает постепенное уменьшение цикловой подачи топлива при уменьшении частоты вращения коленчатого вала двигателя от 1300 мин^{-1} до 1000 мин^{-1} и тем самым обеспечивает бездымную работу двигателя.

При уменьшении частоты вращения коленчатого вала двигателя ниже 1300 мин⁻¹ усилие предварительного сжатия пружины 38 отрицательного корректора становится достаточным для преодоления центробежной силы грузов 24. При этом упор 39 корректора выдвигается из втулки 16 отрицательного корректора и, перемещая муфту грузов и систему рычагов, сдвигает рейку ТНВД в сторону, соответствующую уменьшению цикловой подачи топлива. Частота вращения кулачкового вала ТНВД, соответствующая моменту начала работы отрицательного корректора, т.е. моменту начала выдвижения упора из втулки, регулируется предварительным сжатием пружины 38. Чем меньше частота вращения коленчатого вала двигателя, тем больше величина выступания упора из втулки отрицательного корректора, и тем меньше величина цикловой подачи топлива. При 1000 мин⁻¹ величина цикловой подачи топлива наименьшая, ее значение определяется максимальной величиной упора отрицательного корректора.

Отрицательный корректор ТНВД 133-20 (12, 13, 14, 16, 18 рис. 26) обеспечивает постепенное уменьшение цикловой подачи топлива при уменьшении частоты вращения коленчатого вала двигателя от номинальной до 1000 мин⁻¹.

Регулятор частоты вращения оснащен корректором подачи топлива по наддуву 1 для снижения теплонапряженности и дымности отработавших газов дизеля на малых частотах вращения и переходных режимах. Кроме того, корректор защищает двигатель в аварийных ситуациях, возникающих при отказах системы турбонаддува. Принцип действия корректора по наддуву заключается в том, что при снижении давления наддувного воздуха, он воздействует на рейку топливного насоса, уменьшая подачу топлива.

Корректор подачи топлива по наддуву (рис. 28) установлен на верхней части корпуса регулятора. К проставке 20 с помощью болтов крепятся корпус корректора 16, корпус мембраны 5 и крышка корректора 14. Внутри корпуса корректора расположена пара поршень 13 и золотник 12. Через упор 2 поршень

поджимается пружиной 4 к корпусу корректора. На упоре установлена гильза 1 упора, которая пружиной 3 постоянно поджимается к регулировочному болту 21 рычага 19 (рис. 28б). Рычаг установлен на оси 18 в проставке. На одном конце рычага расположен регулировочный болт с гайкой, а другой конец при работе корректора непосредственно воздействует на рейку ТНВД. В корпусе мембраны располагается выполненная из специальной ткани мембрана в сборе со штоком 9, закрытая крышкой 6. В крышке выполнено отверстие для подвода воздуха от впускного коллектора двигателя. Рычаг 17, установленный на оси, служит для передачи движения от штока к золотнику 12. В золотник корректора 11. упирается пружина Для изменения предварительного сжатия в крышку 14 корректора ввернут корпус 10 пружины. На корпус навернута контргайка и колпачок. В корпус корректора ввернут штуцер 15 подвода масла из системы смазки двигателя.

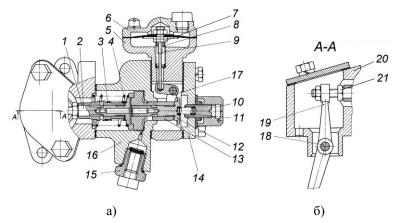


Рис. 28. Корректор по наддуву: а) горизонтальный разрез; б) вертикальный разрез

1-гильза упора; 2-упор; 3-пружина гильзы; 4-пружина поршня; 5-корпус мембраны; 6-крышка мембраны; 7-контргайка штока мембраны; 8-пружина; 9-шток с мембраной; 10-корпус пружины корректора; 11-пружина корректора; 12-золотник; 13-поршень; 14-крышка корректора; 15-штуцер подвода масла; 16-корпус корректора; 17-рычаг; 18-ось рычага; 19-рычаг; 20-проставка; 21-регулировочный болт рычага

Уплотнение сопряженных деталей корректора по наддуву осуществляется с помощью паронитовых прокладок.

При неработающем двигателе давление масла в системе смазки и воздуха во впускных корректорах отсутствует. Пружина 4 поджимает поршень 13 с упором 2 к корпусу корректора 16. Пружина корректора 11 поджимает золотник 12 и шток 9 с мембраной до упора в крышку мембраны.

При пуске двигателя масло из системы смазки двигателя через ввертыш 15 начинает поступать в поршневую полость корректора и через открытые сливные окна поршня, осевые каналы золотника, поршня и упора сливается в полость регулятора.

При выходе двигателя на режим холостого хода рейка ТНВД перемещается из стартового положения в сторону уменьшения подачи. Вслед за рейкой под действием пружины 3 перемещается гильза 1, поворачивая рычаг 19. Перемещение гильзы относительно упора приводит к перекрытию сливных окон упора, в результате чего свободный слив прекращается, давление масла в подпоршневой полости увеличивается; и поршень начинает перемещаться влево в свое рабочее положение. Перемещение поршня продолжается до момента открытия сливных окон поршня торцовой рабочей кромкой золотника.

При работе двигателя под нагрузкой и увеличении частоты вращения коленчатого вала давление воздуха в полости Мембрана деформируется, мембраны увеличивается. перемещает рычаг 17 корректора, который в свою очередь сдвигает золотник корректора вправо. При этом площадь проходного сечения, через которые происходит перетекание масла из подпоршневой полости в осевой канал поршня увеличивается, давление масла в подпоршневой полости уменьшается, и поршень вместе с упором под действием пружины смещается вправо, восстанавливая свое положение относительно золотника. Вслед за поршнем и упором под действием стартовой пружины, перемещается рейка ТНВД. Таким образом, увеличение давления воздуха в полости мембраны приводит к увеличению цикловой подачи топлива. Перемещение рейки сопровождается поворотом рычага 19, при этом величина перемещения рейки и изменения цикловой подачи определяется величиной перемещения поршня и упора.

При уменьшении частоты вращения коленчатого вала давление турбокомпрессора падает, уменьшается давление в полости мембраны, золотник 12 под действием пружины 11 смещается влево и рабочая кромка торцевой поверхности золотника перекрывает сливные окна поршня. В подпоршневой полости давление масла растет, поршень сдвигается влево до момента открытия сливных окон и через упор 2 и рычаг 19 сдвигает рейку в сторону уменьшения подачи.

Таким образом, изменение давления воздуха в полости мембраны приводит к изменению положения золотника, поршень автоматически отслеживает положение золотника и обеспечивает соответствующее перемещение рейки ТНВД. Величина перемещения рейки и изменение цикловой подачи определяется величиной перепада давления в полости мембраны и характеристикой пружины корректора.

При увеличении давления надува около $0,06~\text{M}\Pi a$ $(0,6~\text{кгс/cm}^2)$ ограничение подачи корректором снимается.

При останове двигателя корректор обеспечивает автоматическое включение пусковой подачи. Демонтаж корректора по наддуву вместе с проставкой 20 в эксплуатации не рекомендуется, так как затем возможна неправильная установка рычага 19 относительно рейки, ведущая к разносу двигателя.

В случае необходимости демонтажа (например, при ремонте) при последующей установке корректора на регулятор отвести скобой кулисы двигателя рейку насоса в положение выключенной подачи и вставить корректор проставкой в корпус регулятора. Затем отпустить скобу кулисы. После этого необходима проверка регулировки корректора по наддуву, а также проверка регулятора на выключение подачи топлива.

ОСНОВНЫЕ РЕГУЛИРОВКИ, ПРЕДУСМОТРЕННЫЕ КОНСТРУКЦИЕЙ РЕГУЛЯТОРА

- 1 Минимальная частота вращения холостого хода регулируется болтом 7 (рис. 25) и корпусом буферной пружины 9 (рис. 26);
- 2 Максимальная частота вращения холостого хода (начало выброса рейки) регулируется болтом 4 (рис. 25).

- 3 Номинальная мощность (подача) регулируется болтом 10, подрегулируется винтом 19 (рис.26).
- 4 Максимальный крутящий момент (для ТНВД 133-30) подрегулируется корпусом пружины корректора 34 (рис. 27).
- 5 Предварительное натяжение пружины (разность оборотов конца и начала выброса рейки) регулируется винтом 7 (рис. 26).
- 6 Подача топлива при 650...700 мин⁻¹ регулируется: для ТНВД 133-20 - гайкой корректора 12 (рис. 26); для ТНВД 133-30 - шайбами между упором 39 и втулкой 16 корректора (рис. 27).
- 7 Предварительное натяжение пружины обратного корректора (обороты начала срабатывания корректора) регулируется:

для ТНВД 133-20 - корпусом корректора 13 (рис. 26); для ТНВД 133-30 - шайбами между пружиной 38 и пробкой 37 корректора (рис. 27).

К особенностям регулировки следует отнести то, что для обеспечения уменьшенного усилия на рычаге управления рычаг пружины при регулировке частоты вращения начала действия регулятора должен быть максимально приближен к упору в корпусе регулятора, ограничивающему его поворот. Подрегулировку начала действия регулятора производить винтом двухплечего рычага

ДЕМПФЕРНАЯ МУФТА

Топливный насос высокого давления мод. 133-20, 133-30 дополнительно комплектуется демпферной муфтой, которая устанавливается на передний конец кулачкового вала с целью защиты механизмов от разрушения. Демпферная муфта представляет собой неразборную конструкцию со свободно вращающимся маховиком в высоковязкой специальной жидкости.

Вмятины на корпусе муфты выводят ее из строя.

ТОПЛИВНЫЙ НАСОС ВЫСОКОГО ДАВЛЕНИЯ МОД. 604.5, 604.5-10, 607.5, 607.5-10

Устройство секции насоса высокого давления показано на рис. 29.

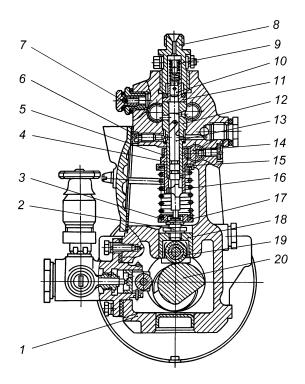


Рис. 29. Секция топливного насоса высокого давления:

1-корпус насоса; 2-контргайка; 3-регулировочный болт; 4втулка поворотная; 5-зубчатый венец; 6-установочный винт; 7пробка для выпуска воздуха; 8-штуцер; 9-пружина нагнетательного клапана; 10-нагнетательный клапан; 11-корпус нагнетательного клапана; 12-втулка плунжера; 13-плунжер; 14рейка; 15-тарелка верхняя пружины; 16-пружина толкателя; 17тарелка нижняя пружины; 18-толкатель; 19-ролик толкателя; 20кулачковый вал В корпусе 1 насоса установлены плунжерные пары, нагнетательные клапаны 10 и штуцеры 8, к которым подсоединяются трубопроводы высокого давления. Нагнетательный клапан и корпус клапана — прецизионная пара, которая может заменяться только комплектно.

Прецизионную пару составляют и плунжер 13 с втулкой 12. Правильное положение втулки плунжера относительно корпуса обеспечивается винтом 6.

Плунжер 13 приводится в движение от кулачкового вала 20 через роликовый толкатель 18. В толкатель ввернут регулировочный болт 3, который контрится гайкой 2 и служит для регулировки начала подачи топлива. Пружина 16 через нижнюю тарелку 17 постоянно прижимает толкатель к кулачку.

От проворота толкатель фиксируется сухарем толкателя, который входит в паз на расточке корпуса насоса.

Для изменения количества подаваемого топлива плунжер во втулке 12 поворачивается поворотной втулкой 4 с зубчатым венцом 5, входящим в зацепление с рейкой 14. Регулировка подачи топлива на номинальном режиме каждой секцией насоса производится поворотом втулки 4 относительного зубчатого венца 5 при ослабленном винте крепления зубчатого венца.

Работа секции протекает следующим образом. При движении плунжера 13 вниз внутреннее пространство втулки 12 заполняется топливом, и одновременно оно подается насосом низкого давления в подводящий клапан корпуса насоса. При этом открывается впускное отверстие, и топливо поступает в надплунжерное пространство. При обратном движении плунжера топливо перепускается в топливо подводящий канал до тех пор, пока торцовая кромка плунжера не перекроет впускное отверстие втулки. При дальнейшем движении плунжера вверх давление в надплунжерном пространстве возрастает. Когда давление достигнет величины, при которой открывается нагнетательный приподнимется, клапан, ОН И топливо поступит по топливопроводу высокого давления к форсунке.

Движущийся плунжер продолжает сжимать топливо. Когда давление достигнет такой величины, что превысит усилие, создаваемое пружиной форсунки, игла форсунки поднимется и начнется процесс впрыскивания топлива в цилиндр двигателя. По мере движения плунжера вверх наступает момент, когда кромка плунжера открывает отсечное отверстие на втулке, что вызывает

падение давления в топливопроводе. При этом разгрузочный поясок нагнетательного клапана, погружаясь в корпус 11 под действием пружины 9, увеличивает объем в топливопроводе между форсункой и клапаном. Этим достигается более четкая отсечка подачи топлива. Количество подаваемого топлива дозируется изменением момента конца подачи при постоянном его начале. При перемещении рейки плунжер поворачивается, и регулирующая кромка открывает отверстие втулки раньше или позже, вследствие чего изменяется продолжительность подачи, а, следовательно, и количество подаваемого топлива.

На поверхности плунжера имеется кольцевая канавка, а во втулке плунжера радиальное отверстие для отвода топлива, просочившегося через зазор в плунжерной паре. Уплотнение между втулкой плунжера и корпусом насоса осуществляется резиновым кольцом. Из полости вокруг втулки плунжера просочившееся топливо отводится в канал, проходящий вдоль корпуса насоса. Далее из канала топливо поступает через дренажный трубопровод в топливный бак.

В нижней части корпуса насоса расположен кулачковый вал.

Топливный насос высокого давления в сборе с регулятором частоты вращения, муфтой опережения впрыска и топливоподкачивающим насосом изображен на рис. 30.

Кулачковый вал вращается в роликовых конических подшипниках и промежуточной опоре. Осевой люфт кулачкового вала в пределах 0.01...007 мм регулируется набором прокладок.

Рейка топливного насоса перемещается в направляющих втулках, запрессованных в корпус насоса. Выступающий из насоса конец рейки защищен втулкой 3 (рис. 30), в которую ввернут винт 2, ограничивающий мощность двигателя в обкаточный период. Винт-ограничитель контрится проволокой и пломбируется.

В верхней части корпуса насоса имеются подводящий и отводящий каналы, по которым топливо поступает к плунжерным парам. Со стороны регулятора каналы закрыты пробками с уплотнительными резиновыми кольцами. Со стороны муфты опережения впрыска к подводящему каналу присоединяется подводящий топливопровод, а по отводящему через перепускной клапан отводится избыточное количество топлива. Продольные

каналы со стороны подвода топлива соединены поперечным каналом. Отверстие для выпуска воздуха закрыто пробкой 7 (рис 29).

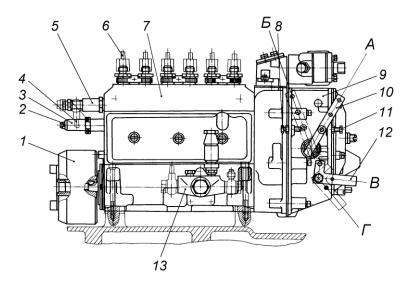


Рис. 30. Топливный насос высокого давления:

1-муфта опережения впрыскивания; 2-винт-ограничитель; 3-втулка; 4-топливопровод низкого давления; 5-перепускной клапан; 6-топливопровод высокого давления; 7-топливный насос высокого давления; 8 болт ограничения максимальной частоты вращения; 9-регулятор частоты вращения; 10-рычаг управления регулятором; 11- болт ограничения минимальной частоты вращения; 12-рычаг останова; 13-топливоподкачивающий насос; А-положение рычага при минимальной частоте вращения холостого хода; Б-положение рычага при максимальной частоте вращения холостого хода; В-положение рычага при работе; Г-положение рычага при выключенной подаче

РЕГУЛЯТОР ЧАСТОТЫ ВРАЩЕНИЯ

ТНВД оснащен всережимным механическим регулятором частоты вращения (рис. 31), который, изменяя подачу топлива в зависимости от нагрузки, поддерживает заданную водителем частоту вращения коленчатого вала двигателя.

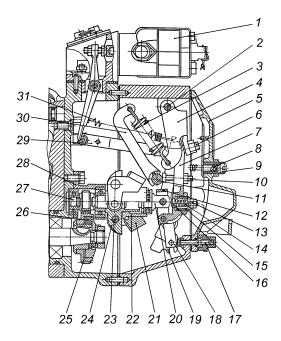


Рис. 31. Регулятор частоты вращения:

1-корректор подачи топлива по наддуву; 2-ось двуплечего рычага; 3-пружина регулятора; 4-двуплечий рычаг; 5-крышка смотрового люка; 6-винт двуплечего рычага; 7-рычаг регулятора; 8-буферная пружина; 9-корпус буферной пружины; 10-регулировочный болт; 11-вал рычага пружины; 12-серьга регулятора; 13-корпус пружины корректора; 14-гайка корректора; 15-пружина корректора; 16-корректор; 17-винт подрегулировки мощности; 18-рычаг рейки; 19-кулиса; 20-пята; 21-грузы регулятора; 22-муфта грузов; 23-ось грузов; 24-державка грузов; 25-ведущая шестерня; 26-сухари; 27-валик державки грузов; 28-стакан; 29-тяга рейки; 30-рычаг пружины; 31-пружина рычага рейки.

Регулятор закреплен на заднем торце топливного насоса высокого давления.

На конусе кулачкового вала установлена ведущая шестерня 25. Вращение от вала насоса на ведущую шестерню передается через резиновые сухари 26. Ведомая шестерня выполнена как

одно целое с валиком 27 державки грузов и установлена на двух шарикоподшипниках в стакане 28. На валик напрессована державка грузов 24, на осях 23 которой качаются грузы 21. Грузы своими роликами упираются в торец муфты 22, которая через упорный подшипник и пяту 20 передает усилие грузов силовому рычагу 7, подвешенному вместе с двуплечим рычагом 4 на оси 2.

Муфта с упорной пятой в сборе одним концом опирается на направляющую поверхность державки, а за второй конец повешена на серьге 12, закрепленной на силовом рычаге 7. Пята регулятора связана общей осью с рычагом 18 рейки и через тягу 29 с рейкой топливного насоса.

К верхней части рычага рейки присоединена пружина 31 рычага рейки, а в нижнюю часть запрессован палец, который входит в паз кулисы 19. Вал 11 рычага пружины жестко связан рычагом управления и рычагом 30 пружины. За рычаг пружины и двуплечий рычаг зацеплена пружина 3 регулятора, усилие которой передается с двуплечего рычага на силовой рычаг через регулировочный винт 6 двуплечего рычага.

На силовом рычаге имеется регулировочный болт 10, который упирается в вал рычага пружины регулятора 11. В нижней части силового рычага находиться корректирующее устройство, предназначенное для повышения тяговых качеств двигателя. Корректирующее устройство состоит из корректора 16. пружины 15, корпуса пружины корректора 13, гайки 14.

Подача топлива полностью выключается механизмом останова, состоящим из кулисы 19, рычага останова 12 (рис. 30) и возвратной пружины, расположенной за рычагом останова под крышкой.

Кулиса с рычагом останова соединяется пружиной, расположенной внутри кулисы и предохраняющей механизм регулятора от чрезмерных усилий при выключении подачи топлива. Во время работы двигателя кулиса прижата усилием возвратной пружины к регулировочному винту 17 (рис. 31).

Сзади крышка регулятора закрыта крышкой смотрового люка 5 с буферным устройством, состоящим из корпуса 9, пружины 8 и контргайки.

Регулятор частоты вращения оснащен корректором подачи топлива по наддуву 1 для снижения теплонапряженности и дымности отработавших газов двигателя на малых частотах вращения и переходных режимах. Кроме того, корректор

защищает двигатель в аварийных ситуациях, возникающих при отказах системы турбонаддува. Принцип действия корректора по наддуву заключается в том, что при снижении давления наддувочного воздуха он воздействует на рейку топливного насоса, уменьшая подачу топлива.

Чувствительным элементом, реагирующим на изменение давления воздуха, является мембрана со штоком в сборе 9 (рис. 28), закрепленная между корпусом мембраны 5 и крышкой мембраны 6, в которой имеется отверстие для подвода воздуха. Мембрана, преодолевая усилие пружины 8, воздействует через рычаг 17 на золотник 12. В корпус 16 корректора ввернут штуцер подвода масла 15 от системы смазки двигателя. Внутри корпуса установлен поршень 13, который через упор 2 поджимается пружиной поршня 4. На неработающем двигателе при отсутствии давления масла пружина поршня 4 сдвигает поршень и упор в положение, обеспечивающее стартовую подачу.

На упоре 2 установлена гильза 1, которая пружиной 3 поджимается к регулировочному болту 21 рычага 19, а последний к рейке управления топливоподачей. При запуске двигателя гильза двигается за рейкой до выхода двигателя на режим холостого хода и только затем включает корректор по наддуву.

С включением корректора поршень 13 начинает "следить" за золотником 12, положение которого зависит от давления воздуха (см. выше). При увеличении давления наддува около $0.06\,$ МПа $(0.6\,$ кгс/см $^2)$ ограничение подачи корректором снимается.

При останове двигателя корректор обеспечивает автоматическое включение пусковой подачи.

Демонтаж корректора по наддуву вместе с проставкой 20 (рис. 28) в эксплуатации не рекомендуется, так как затем возможна неправильная установка рычага 19 относительно оси рейки, ведущая к разносу двигателя.

В случае необходимости демонтажа (например, при ремонте) при последующей установке корректора на регулятор отвести скобой останова двигателя рейку насоса в положение выключенной подачи и вставить корректор проставкой в корпус регулятора. Затем отпустить скобу останова. После этого необходима проверка регулировки корректора по наддуву, а также проверка регулятора на выключение подачи топлива.

ОСНОВНЫЕ РЕГУЛИРОВКИ, ПРЕДУСМОТРЕННЫЕ КОНСТРУКЦИЕЙ РЕГУЛЯТОРА

- 1 Максимальная частота вращения холостого хода (начало выброса рейки) регулируется болтом 8 (рис. 30).
- 2 Минимальная частота вращения холостого хода регулируется болтом 11 (рис. 30) и корпусом буферной пружины 9 (рис. 31).
- 3 Номинальная подача регулируется болтом 10 (рис 31).
- 4 Номинальная мощность регулируется винтом 17 (рис. 31).
- 5 Предварительное натяжение пружины (разность частоты вращения конца и начала выброса рейки) регулируется винтом 6 (рис. 31).

МУФТА ОПЕРЕЖЕНИЯ ВПРЫСКИВАНИЯ ТОПЛИВА

Муфта опережения впрыскивания топлива (рис. 32) устанавливается на двигатели ЯМЗ-236НЕ,Н,БЕ,Б и предназначена для изменения момента начала подачи топлива в зависимости от частоты вращения коленчатого вала двигателя.

Применение муфты опережения впрыскивания способствует получению наилучшей экономичности на различных скоростных режимах.

Муфта опережения впрыскивания имеет две полумуфты, установленные в корпусе 1: ведущую 6 и ведомую 3. Ведущая полумуфта надета на ступицу ведомой полумуфты и может на ней поворачиваться, а ведомая жестко закреплена на кулачковом валу насоса.

Между полумуфтами расположены два одинаковых груза 10, установленные на осях 5 ведомой полумуфты и две проставки 9, установленные на опорных пальцах ведущей полумуфты.

Между осями 5 и опорными пальцами в распор установлены пружины 13, которые, стремясь увеличить расстояние между ними, поворачивают одну полумуфту относительно другой.

В основу работы муфты положен принцип использования центробежных сил грузов.

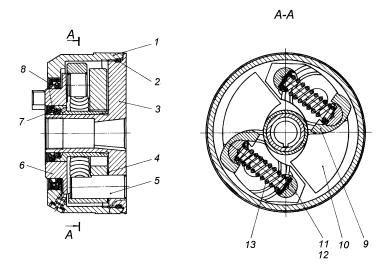


Рис. 32. Муфта опережения впрыскивания топлива: 1-корпус; 2-кольцо уплотнительное; 3-ведомая полумуфта; 4-шайба; 5-ось груза; 6-ведущая полумуфта; 7,8-манжеты; 9-проставка; 10-груз; 11,12-шайбы регулировочные; 13-пружина

С увеличением частоты вращения коленчатого вала двигателя грузы муфты под действием центробежных сил, преодолевая сопротивление своих пружин, расходятся. При расхождении грузы поворачиваются на осях 5. При этом расстояние между осями грузов и опорными пальцами ведущей полумуфты уменьшается и, таким образом, происходит угловое смещение кулачкового вала насоса относительно вала привода насоса. Следовательно, угол опережения впрыскивания топлива увеличивается.

При снижении частоты вращения коленчатого вала центробежная сила грузов уменьшается и под действием пружин ведомая полумуфта поворачивается относительно ведущей в сторону, противоположную вращению кулачкового вала насоса, в результате чего угол опережения впрыскивания топлива уменьшается.

ТОПЛИВОПОДКАЧИВАЮЩИЙ НАСОС

Топливоподкачивающий насос (рис. 33) — поршневого типа. Насос крепится тремя болтами с левой стороны на корпусе топливного насоса высокого давления и приводится в действие от эксцентрика кулачкового вала через роликовый толкатель.

В корпусе 1 насоса размещены поршень 2, пружина 3 поршня, упирающаяся с одной стороны в поршень, а с другой – в пробку 5, всасывающий 26 и нагнетательный 13 клапаны, прижимаемые к седлам 27 пружинами 14.

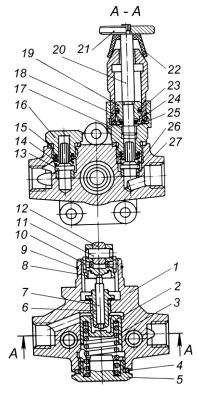


Рис. 33. Топливоподкачивающий насос:

1-корпус; 2-поршень; 3-пружина поршня; 4-уплотнительное кольцо; 5, 16-пробки; 6-втулка штока; 7шток толкателя; 8-толкатель; 9стопорное кольцо толкателя; 10сухарь толкатели; 11-ось ролика; 12-ролик: 13-нагнетательный клапан; 14-пружина клапана; 15уплотнительные шайбы; корпус цилиндра; 18-цилиндр; 19поршень; 20-шток; 21-рукоятка; 22-защитный колпачок; 23,24,25уплотнительные кольна: 26всасывающий клапан; 27-седло клапана

Полость корпуса насоса, в которой перемещается поршень, соединена каналами с полостями над всасывающим и под нагнетательным клапанами. Привод поршня осуществляется толкателем 8 через шток 7. Ролик толкателя вращается на

плавающей оси 11, застопоренной двумя сухарями 10 от продольного перемещения. Одновременно сухари толкателя, перемещаясь в пазах корпуса 1, предохраняют толкатель от разворота. Шток 7 перемещается в направляющей втулке 6, которая ввернута в корпус насоса на специальном клее. Шток и втулка представляют собой прецизионную пару.

Для нагнетания топлива при неработающем двигателе насос оборудуется топливопрокачивающим насосом. Этот насос используется для удаления воздуха из топливной системы перед пуском двигателя, а также для заполнения топливом всей магистрали при техническом уходе за топливной аппаратурой.

ФОРСУНКА

Форсунка — закрытого типа, с многодырчатым распылителем и гидравлическим управлением подъема иглы.

На двигатели устанавливаются форсунки нескольких моделей (см. раздел «Техническая характеристика»), имеющие конструктивные и регулировочные отличия.

ФОРСУНКИ МОДЕЛЕЙ 267-01, 267-11 ИЛИ 204-50, 204-50.01

Все детали форсунки собраны в корпусе 7 (рис. 34). К нижнему торцу корпуса форсунки гайкой 5 присоединяются проставка 3 и распылитель (мод. 335.1112110-50, 335.1112110-70, 204.1112110-50 и 204.1112110-50.01 соответственно). Взаимное расположение корпуса форсунки, проставки и распылителя определяется штифтами, запрессованными в проставке. Внутри корпуса 1 распылителя находится запорная игла 2. Корпус и игла составляют прецизионную пару. Распылитель имеет пять распыливающих отверстий. Усилие затяжки пружины 6 (давление начала впрыскивания) регулируется винтом 12, ввернутым в корпус форсунки. Винт фиксируется гайкой 10.

Для форсунок моделей 204-50 и 204-50.01 усилие затяжки пружины 6 регулируется регулировочными шайбами, установленными в корпус форсунки.

Топливо подводится к форсунке через штуцер 8 ввернутый в корпус форсунки. В штуцер запрессован стержень фильтра 15. Топливо, просочившееся через зазор между иглой и корпусом

распылителя, отводится из форсунки через полость пружины и отверстия в регулировочном винте и колпачке 9.

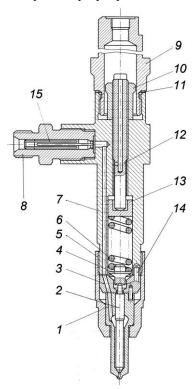


Рис. 34. Форсунка: 1-корпус распылителя; 2-игла распылителя; 3-проставка; 4штанга; 5-гайка распылителя; 6пружина; 7-корпус; 8-штуцер с фильтром; 9-колпак; 10-гайка; 11-шайба; 12-регулировочный винт; 13-тарелка пружины; 14штифт; 15-щелевой фильтр

Форсунка устанавливается в стакан головки цилиндров. Под торец гайки распылителя подкладывается гофрированная шайба для уплотнения от прорыва газов.

ВНИМАНИЕ! ШАЙБЫ ПОВТОРНО ИСПОЛЬЗОВАТЬ ЗАПРЕЩАЕТСЯ

ФОРСУНКА МОДЕЛИ 261-13 (12)

Все детали форсунки (рис. 36) собраны в корпусе 2. К нижнему торцу корпуса форсунки гайкой 3 присоединяется корпус 4 распылителя, внутри которого находится запорная игла 5. Игла и корпус распылителя составляют прецизионную пару, которая может заменяться только комплектно. Распылитель имеет четыре распыливающих отверстия и фиксируется относительно

корпуса двумя штифтами 6. Нижний конец штанги 1 упирается в хвостовик иглы распылителя. Сверху на штангу напрессована тарелка 7, в которую упирается пружина 13 форсунки. Усилие предварительной затяжки пружины регулируется винтом 9, ввернутым в гайку 11 пружины с контргайкой 8. На гайку пружины навернут колпак 10 с уплотнительной шайбой 12.

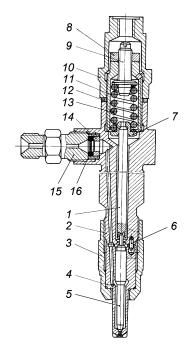


Рис. 36. Форсунка:

1-штанга; 2-корпус; 3-гайка 4-корпус распылителя; 5-игла распылителя; распылителя; 6-штифт; 7пружины; тарелка контргайка; 9-регулировочный 10-колпак; 11-гайка винт: пружины; 12-шайба: 13пружина; 14-втулка; 15штуцер; 16-фильтр;

Топливо к форсунке подводится через штуцер 15, в который установлена втулка 14, поджимающая сетчатый фильтр 16. Топливо, просочившееся между иглой и корпусом распылителя, отводится из форсунки через отверстия в гайке пружины и колпаке.

Форсунка устанавливается в стакан головки цилиндров. Под торец гайки распылителя подкладывается медная гофрированная шайба для уплотнения от прорыва газов. Для уплотнения внутренней полости головки цилиндров на штуцер форсунки надет уплотнитель.

ВНИМАНИЕ! ШАЙБЫ ПОВТОРНО ИСПОЛЬЗОВАТЬ ЗАПРЕЩАЕТСЯ

ФИЛЬТР ГРУБОЙ ОЧИСТКИ ТОПЛИВА

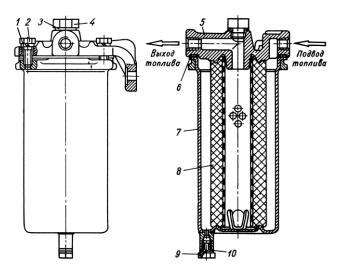


Рис. 37. Фильтр грубой очистки топлива:

1-пружинная шайба; 2-болт; 3-прокладка пробки; 4-пробка; 5-крышка; 6-прокладка колпака; 7-колпак; 8-фильтрующий элемент; 9-сливная пробка; 10-прокладка сливной пробки

Фильтр грубой очистки топлива (рис. 37) состоит из крышки 5, колпака 7 и фильтрующего элемента 8. Колпак и крышка соединяются четырьмя болтами 2. Уплотнение между ними обеспечивается резиновой прокладкой 6. На колпаке имеется сливная пробка 9 с прокладкой 10. Фильтрующим элементом является ворсистый хлопковый шнур, навитый на сетчатый каркас. Фильтрующий элемент плотно зажимается по торцам между крышкой и дном колпака. Отверстие в крышке, закрытое пробкой 4 с прокладкой 3, служит для заполнения фильтра топливом.

ФИЛЬТР ТОНКОЙ ОЧИСТКИ ТОПЛИВА

На двигатели устанавливается фильтр тонкой очистки топлива 7511.1117010 со сменным фильтром для топлива.

Фильтр тонкой очистки топлива (рис. 38) состоит из корпуса 2 с ввернутым к нему штуцером 1 и сменного фильтра для топлива 8. Сменный фильтр выполнен в виде неразборного патрона с металлическим корпусом. Установка сменного фильтра на корпус осуществляется наворачиванием его до упора на центральный резьбовой штуцер 1. Уплотнение между корпусом и сменным фильтром обеспечивается уплотнительным кольцом 7 сменного фильтра.

В корпус 2 ввернут клапан жиклер 3. Через клапан жиклер сливается часть топлива вместе с воздухом, попавшим в систему низкого давления. Клапан жиклер отрегулирован на давление начала открытия $20...40~\mathrm{k\Pi a}~(0,2...0,4~\mathrm{krc/cm^2})$. При малом давлении в системе, что может наблюдаться при пуске двигателя, клапан перекрывает канал и слива топлива не происходит, питание ЭФУ топливом улучшается.

Штуцер 1 и клапан жиклер 3 в корпус фильтра тонкой очистки топлива устанавливаются на герметик УГ-9 или Унификс К1 с моментом затяжки 58,8...78,4 (6...8) Н м (кгс м).

В процессе эксплуатации предусматривается замена сменного фильтра для топлива при ТО-2 через каждые 1000 часов работы двигателя (см. раздел «Техническое обслуживание»).

При потере мощности двигателя сменный фильтр для топлива необходимо заменить, не дожидаясь проведения очередного технического обслуживания.

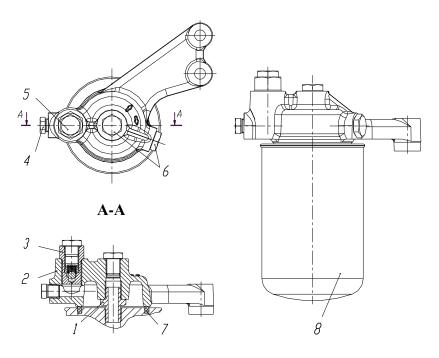


Рис. 38. Фильтр тонкой очистки топлива со сменным фильтром

1 — штуцер; 2 — корпус фильтра тонкой очистки топлива; 3 — клапан жиклер; 4 — пробка К 1/4"; 5, 6 — пробки M14x1,5-6g; 7 — кольцо уплотнительное; 8 — сменный фильтр для топлива

ТОПЛИВОПРОВОДЫ

Для подвода топлива к насосу и форсункам и отвода его излишков на двигателе имеется система топливопроводов низкого и высокого давления.

Топливопроводы низкого давления присоединяются пустотельми болтами или накидными гайками через наконечники, закрепленные на концах топливопроводов. Контактные поверхности уплотняются медными шайбами толщиной 1,5 мм.

Двигатели ЯМЗ могут комплектоваться полиамидными топливопроводами низкого давления. Контактные поверхности уплотняются алюминиевыми шайбами толщиной 1,5 мм.

Моменты затяжки пустотелых латунных болтов приводятся ниже:

Резьбовое соединение	Момент затяжки, Н м (кгс м)
Болты крепления полиамидных	
топливопроводов низкого давления:	
M10	8 – 11 (0,8 – 1,1)
M14	18 - 23 (1,8 - 2,3)

ВНИМАНИЕ! УПЛОТНИТЕЛЬНЫЕ ШАЙБЫ ПОВТОРНО ИСПОЛЬЗОВАТЬ ЗАПРЕЩАЕТСЯ

Топливопроводы высокого давления имеют одинаковую длину для всех цилиндров двигателя. Концы топливопроводов высажены в форме конуса и прижаты накидными гайками к штуцерам топливного насоса высокого давления и форсунок. Во избежание поломок топливопроводов от вибрации они должны быть закреплены при помощи специальных скоб. Для уплотнения в общих головках на топливопроводы высокого давления надеты фланцы. Порядок работы секций для разных моделей ТНВД различный (см. раздел «Техническая характеристика»), поэтому различны схемы соединения топливопроводами высокого давления секций ТНВД и форсунок цилиндров двигателя.

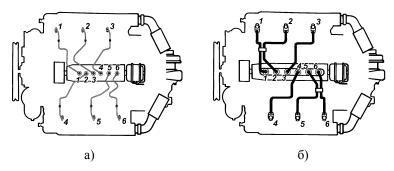


Рис. 39. Схема соединения топливопроводами высокого давления секций ТНВД и форсунок цилиндров двигателя:

- а) ТНВД модели 133 (1-2-3-5-4-6)
- б) ТНВД моделей 604, 607 (1-4-2-5-3-6);

НАДДУВ

Двигатель оборудован турбокомпрессором, использующим энергию выхлопных газов для наддува двигателя. Увеличивая массу воздуха, поступающего в цилиндры, турбокомпрессор способствует более эффективному сгоранию увеличенной дозы топлива, за счет чего повышается мощность двигателя при умеренной тепловой напряженности.

УСТРОЙСТВО ТУРБОКОМПРЕССОРА

Турбокомпрессор (рис. 40) состоит из одноступенчатого центробежного компрессора и радиальной центростремительной турбины.

Колесо турбины 14 и колесо компрессора 23 расположены на противоположных концах вала ротора консольно по отношению к втулке подшипника 17.

Рабочее колесо 23 центробежного компрессора — полуоткрытого типа, с радиальными лопатками, отлито из алюминиевого сплава. Оно напрессовано на вал и закреплено гайкой 1, установленной с герметиком.

Рабочее колесо турбины 14 — полуоткрытого типа, с радиальными лопатками, изготовлено методом литья из жаропрочного сплава. Оно соединено с валом методом сварки трением.

Корпус турбины изготовлен из жаропрочного чугуна. Газ подводится к колесу турбины двумя суживающимися каналами. На торце корпуса турбины имеются шпильки для крепления выпускного трубопровода.

Корпус компрессора 4, вставка и крышка корпуса подшипников 6 изготовлена из алюминиевого сплава. Крышка корпуса подшипника 6 крепится к корпусу подшипника болтами 3 с применением герметика.

В турбокомпрессоре применен подшипник скольжения 17 в виде втулки, изготовленной из алюминиевого сплава. Она установлена в расточке чугунного корпуса подшипника 12 и удерживается от осевых перемещений болтом-стопором 10. Смазывание втулки турбокомпрессора осуществляется под давлением из системы смазки двигателя.

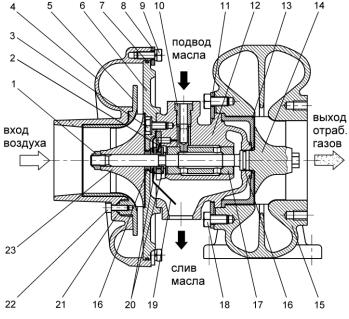


Рис. 40. Турбокомпрессор:

1-гайка крепления колеса компрессора; 2-подшипник упорный; 3-болт; 4-корпус компрессора; 5-вставка; 6-крышка корпуса подшипников; 7-кольцо уплотнительное; 8-пластина компрессора; 9-болт; 10-болт-стопор; 11-пластина турбины; 12-корпус подшипника; 13-проставка корпуса турбины; 14-колесо турбины с валом; 15-корпус турбины; 16-кольца уплотнительные; 17-втулка; 18-болт; 19-экран маслосбрасывающий; 20-шайбы упорные; 21-кольцо уплотнительное; 22-винт; 23-колесо компрессора.

Тщательно отбалансированный ротор установлен во втулке 17. Осевые усилия, действующие на ротор, воспринимаются упорным подшипником 2. На каждом конце вала ротора установлены разрезные уплотнительные кольца 16, изготовленные из специального чугуна

Турбокомпрессор крепится к выпускным коллекторам за корпус турбины. Выходной патрубок корпуса компрессора соединен через патрубки со впускными коллекторами двигателя или, при наличии, с охладителем наддувочного воздуха.

СИСТЕМА ОХЛАЖДЕНИЯ

Система охлаждения двигателя — жидкостная, циркуляционная. Система включает в себя водяной насос, жидкостномасляный теплообменник (только ЯМЗ-236НЕ,НЕ2,БЕ,БЕ2), вентилятор, термостаты, дистанционный термометр и радиатор, устанавливаемый на раме машины.

Во время работы двигателя циркуляция охлаждающей жидкости в системе охлаждения создается центробежным насосом. Из нагнетательного патрубка насоса через каналы в крышке шестерен распределения жидкость под давлением поступает в водяную рубашку левого ряда цилиндров через жидкостно-масляный теплообменник (только ЯМЗ-236НЕ, НЕ2, БЕ, БЕ2) и правого ряда блока цилиндров, затем в головки цилиндров и собирается в водосборных трубопроводах. В водяные рубашки головок цилиндров жидкость подается по направляющим каналам, в первую очередь к наиболее нагретым поверхностям — выпускным патрубкам и стаканам форсунок. Из водосборных трубопроводов нагретая жидкость подается через термостаты в радиатор, где отдает тепло потоку воздуха, создаваемому вентилятором, после чего снова идет к водяному насосу. Когда температура охлаждающей жидкости понижается, автоматически направляют весь непосредственно к водяному насосу, минуя радиатор. Таким образом, посредством термостатов обеспечивается оптимальный тепловой режим работы двигателя.

ВОДЯНОЙ НАСОС

Водяной насос центробежного типа, установлен в передней части двигателя и приводится во вращение клиновым ремнем от шкива, установленного на переднем конце коленчатого вала.

В чугунном корпусе вращается крыльчатка, напрессованная на валик. Валик насоса установлен на двух шарикоподшипниках с односторонним уплотнением. Полость подшипников при сборке насоса заполняется смазкой Литол-24 ГОСТ 21150-87 на весь срок службы насоса без дополнительной смазки.

Уплотнение полости насоса осуществляется по торцовым поверхностям. Для контроля за герметичностью торцового уплотнения в корпусе насоса имеется дренажное отверстие.

Устанавливаемые на двигатели водяные насосы имеют между собой значительные конструктивные отличия и не взаимозаменяемы между собой:

- Водяной насос двигателей ЯМЗ-236H,Б (рис. 41) имеет маркировку на корпусе 236-1307010-A3.
- Водяной насос двигателей ЯМЗ-236НЕ,НЕ2,БЕ,БЕ2 (рис. 42) имеет маркировку на корпусе 236-1307010-Б1.

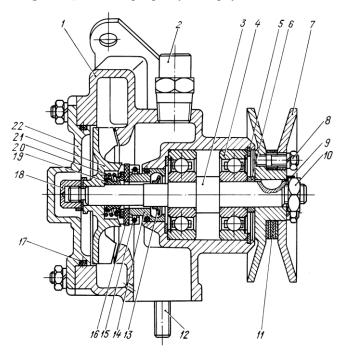


Рис. 41. Водяной насос:

1 — корпус; 2 — ниппель; 3 — валик; 4 — шарикоподшипники; 5 — стопорное кольцо; 6 — втулка; 7 — шкив; 8,10 — гайки; 9 — замковая шайба; 11 — регулировочная прокладка; 12 — шпилька; 13 — водосбрасыватель; 14 — втулка корпуса; 15 — стопорное кольцо; 16 — упорное кольцо; 17 — уплотнительное кольцо; 18 — гайка крепления крыльчатки; 19 — манжета сальника; 20 — пружина; 21 — крыльчатка; 22 — крышка корпуса.

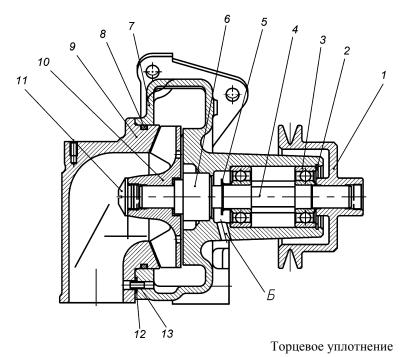
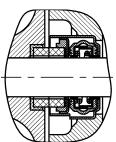



Рис. 42. Водяной насос:

1 — шкив привода; 2 — стопорное кольцо; 3 — подшипники; 4 — валик; 5 — водосбрасыватель; 6 — уплотнение торцевое; 7 — корпус насоса; 8 — кольцо уплотнительное; 9 — патрубок водяного насоса; 10 — крыльчатка; 11 — заглушка крыльчатки; 12 — кольцо уплотнительное; 13 — втулка уплотнительного кольца; Б — дренажное отверстие

ПРИВОД ВЕНТИЛЯТОРА

Двигатели ЯМЗ-236НЕ,НЕ2,БЕ,БЕ2 комплектуется фрикционным приводом вентилятора (рис. 43) предназначенным для включения и выключения вентилятора в зависимости от условий эксплуатации.

Фрикционный привод может работать в трех режимах: автоматическом, постоянно включенным и постоянно выключенном. Управление вентилятора осуществляется с помощью выключателя. На двигателях могут устанавливаться включатели следующих типов:

- Включатель механического типа (рис. 44) совмещенный с термодатчиком и ручным переключателем режимов. Устанавливается на водяную трубу двигателя.
- Электромагнитный клапан КЭМ 32-10 (рис. 46), установленный на корпусе привода вентилятора.

Применение фрикционного привода позволяет:

- Обеспечить оптимальный тепловой режим двигателя.
- Снизить расход топлива за счет снижения потерь мощности на работу вентилятора.
- Повысить надежность шестеренчатого привода двигателя за счет снижения динамических нагрузок на шестерни.
- Обеспечить бродоходимость автомобиля без снятия вентилятора.
 - Сократить время прогрева двигателя.
- Улучшить комфортабельность за счет поддержания надлежащего микроклимата в кабине и снижения шумности.

УСТРОЙСТВО И РАБОТА ПРИВОДА ВЕНТИЛЯТОРА

Вентилятор при неработающем двигателе находится в отключенном состоянии. После пуска двигателя крыльчатка вентилятора может вращаться за счет трения в подшипниках и других сопрягаемых деталях дисковой муфты с частотой 200÷500 об/мин.

При достижении температурного состояния двигателя близкого к высшему оптимальному (+85° ...+93° С) масло от включателя под давлением поступает в штуцер 13 (рис. 43) корпуса 14. Далее через отверстие в корпусе, радиальные отверстия во втулках 10 и 22 попадает в осевое отверстие ведущего вала 18, а оттуда к поршню 30. Поршень начинает

перемещаться, передавая усилия через пружины 32 на обойму, которая давит на диски 4 и 5, выбирая зазоры между ними. После сжатия ведущих и ведомых дисков ведомый вал 25 с крыльчаткой начинает вращаться с рабочей частотой. После того как, температурное состояние двигателя достигнет значения близкого к низшему оптимальному, включатель прекращает подачу масла. поршнем 30, Масло, находящееся под под действием центробежных сил, а также пружин 7, 32 через дренажные отверстия по специальным каналам перемещается во внутреннюю полость передней крышки 2 и шкива 24. С помощью черпательной трубки 9 и далее по каналам в корпусе масло попадает в картер двигателя.

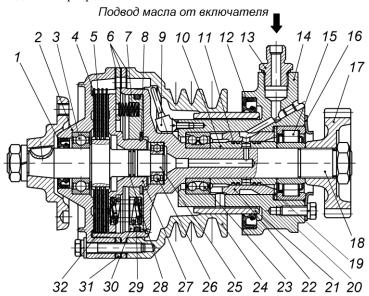


Рис. 43. Привод вентилятора

1 - манжета; 2 - крышка; 3 - подшипник; 4 - диск ведомый; 5 - диск ведущий; 6 - прокладка; 7 - пружина отжимная; 8 - кольцо упорное; 9 - трубка черпательная; 10 - втулка распорная; 11 - кольцо уплотнительное; 12 - манжета; 13 - штуцер; 14 - корпус; 15 - подшипник; 16 - фланец упорный; 17 - шестерня; 18 - вал ведущий; 19 - шайба; 20 - прокладка; 21 - втулка; 22 - втулка распорная; 23 - подшипник; 24 - шкив;25 - вал ведомый; 26 - подшипник; 27 - обойма нажимная; 28 - кольцо уплотнительное; 29 - кольцо уплотнительное; 30 - поршень; 31 - упор поршня; 32 - пружина нажимная.

По мере освобождения полости под поршнем 30 от масла он перемещается под действием пружин 7, 32. Диски фрикционного привода расходятся и вентилятор отключается.

ВКЛЮЧАТЕЛЬ ПРИВОДА ВЕНТИЛЯТОРА

Включатель механического типа привода вентилятора (рис. 44) служит для управления фрикционным приводом. Режим его работы устанавливается с помощью ручного переключателя 20, имеющего три положения:

положение "А" - автоматическое: положение "В" - постоянно включено; положение "О" - постоянно выключено. Подвод масла 📘 19 17 5 7. 29 16 8 15 28 14 20 21 2 13 27 10 12 26 11 Отвод масла 25 к приводу Б

Рис. 44. Включатель:

1 - крышка корпуса; 2 - пружина возвратная; 3 - кольцо уплотнительное; 4 - шайба; 5 - золотник; 6 - пружина золотника; 7 - толкатель; 8-поршень датчика; 9-кольцо уплотнительное; 10-шайба регулировочная; 11 - кольцо уплотнительное; 12 - датчик; 13 - гайка; 14 - шток фиксатора; 15 - шайба; 16 - пробка; 17 - пружина фиксатора; 18 - шарик; 19 - корпус; 20 - рычаг крана; 21 - пружина; 22 - шарик; 23 - кольцо; 24 - пробка крана; 25 - трубка отводящая; 26 - трубка подводящая.

Масло из центрального масляного канала блока по подводящей трубке 29 поступает во включатель.

При положении рычага "В" масло беспрепятственно проходит через выключатель и по отводящей трубке 25 поступает в привод, включая его.

При положении рычага "О" масло в привод не поступает. Привод отключен.

При положении рычага "А" включение и выключение фрикционного привода происходит автоматически в зависимости от температуры охлаждающей жидкости двигателя. При температуре охлаждающей жидкости свыше +70°C поршень 8 датчика 12 выталкивается из корпуса в результате объемного расширения наполнителя датчика. Поршень 8, упираясь в толкатель 7, поднимает его, одновременно сжимая пружину 6 золотника 5. Золотник выключателя 5 остается неподвижным, т.к. удерживается шариком 18 фиксатора 14. При температуре охлаждающей жидкости около +85°C толкатель 7 касается золотника 5, шарик 18 выходит из фиксирующей канавки, золотник 5 резко передвигается в сторону движения толкателя 7. Шарик 18 попадает в другую фиксирующую канавку, золотник 5 останавливается и занимает положение, при котором полость, в которую подводится масло, соединяется с полостью, отводящей масло. По трубке масло поступает к фрикционному приводу вентилятора.

По мере снижения температуры охлаждающей жидкости поршень датчика 8 начинает двигаться в датчик 12 под действием пружины 6. При температуре охлаждающей жидкости +70°C происходит обратное перемещение золотника 5, который перекрывает подводящую и отводящую полости, прекращая доступ масла к приводу. Привод при этом отключается.

ВНИМАНИЕ! ПРИ ПОДГОТОВКЕ К ПРЕОДОЛЕНИЮ БРОДА НЕОБХОДИМО ВКЛЮЧАТЕЛЬ ПРИВОДА ВЕНТИЛЯТОРА УСТАНОВИТЬ В ПОЛОЖЕНИЕ "О" (ПОСТОЯННО ВЫКЛЮЧЕНО). В ОСТАЛЬНОМ НЕОБХОДИМО РУКОВОДСТВОВАТЬСЯ РАЗДЕЛОМ "ПРЕОДОЛЕНИЕ БРОДА" РУКОВОДСТВА ПО ЭКСПЛУАТАЦИИ АВТОМОБИЛЯ.

ВКЛЮЧАТЕЛЬ ЭЛЕКТРОМАГНИТНЫЙ (рис. 45–48). Особенности работы электромагнитного включателя заключается в том, что от термореле поступает электрический сигнал к

электромагнитному клапану, который управляет поступлением масла в муфту привода. Переключатель режимов работы привода в этом случае находится в кабине и управляет работой электромагнитного клапана также электрическим сигналом.

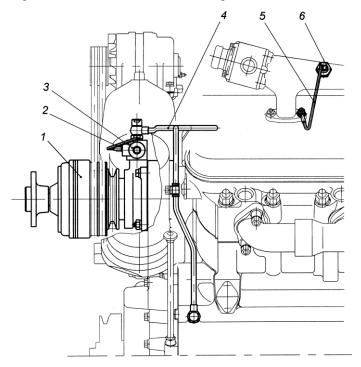
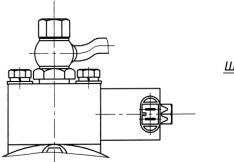
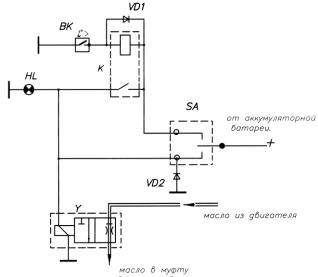



Рис. 45. Расположение деталей привода вентилятора с электромагнитным клапаном на двигателе:


- 1 муфта привода; 2 провод; 3 электромагнитный клапан;
- 4 трубка подвода масла; 5 провод «-»; 6 термореле

Штырь "+" Штырь "-"

Рис. 46. Клапан электромагнитный КЭМ 32-10

Рис. 47. Термореле

включения вентилятора

Поз	Наименование	Кол
BK	термореле 661.3710-01	1
Υ	электромагнитный клапан КЭМ32	1
HL	контрольная лампа	1
SA	переключатель 51.3709	1
VD1, VD2	Диод Д247А	2
K	Реле 11.3747	1

Функции

Переключатель SA находится в кабине
 Переключатель SA имеет три положения
 "Выключено" – вентилятор выключен независимо от темпе -

ратуры двигателя. "Включено" – вентилятор включен независимо от темпе –

ратуры двигателя педигателя от термореле
"Автомат" — вентиятор включается от термореле
661,3710—01 в зависимости от температуры

двигателя
4.

— лампа контрольная включается при работе вентилятора

Рис. 48. Схема включения муфты вентилятора электрическая, принципиальная

ЖИДКОСТНО-МАСЛЯНЫЙ ТЕПЛООБМЕННИК

Жидкостно-масляный теплообменник (ЖМТ) устанавливается на двигатели ЯМЗ-236НЕ,НЕ2,БЕ,БЕ2 всех комплектаций, предназначен для поддержания оптимального уровня температуры масла системы смазки двигателя и крепится к блоку цилиндров с левой стороны двигателя.

Двигатели могут комплектоваться ЖМТ пластинчатого (см. рис. 49) или трубчатого типов (см. рис. 50).

Конструкция ЖМТ пластинчатого типа показана на рис. 49.

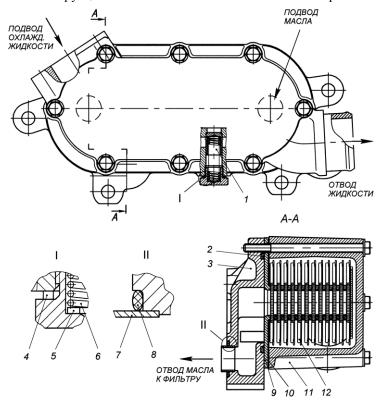


Рис. 49. Жидкостно-масляный теплообменник:

1-клапан перепускной; 2-кольцо уплотнительное; 3-корпус; 4-шайба регулировочная; 5-прокладка регулировочная; 6-пружина; 7-втулка; 8-уплотнительное кольцо; 9-фланец; 10-прокладка; 11-корпус; 12-секции

Теплопередающий элемент 12 крепится к корпусу 3 с уплотнением резиновым кольцом 2 и закрывается крышкой 11 с уплотнением паронитовой прокладкой 10. Охлаждаемое масло проходит внутри секции теплопередающего элемента, а охлаждающая жидкость - снаружи противотоком. В масляной полости корпуса установлен перепускной клапан 1, при открытии которого масло проходит в магистраль минуя теплообменник. Начало открытия клапана при перепаде давления 274±40 кПа (2,8±0,40 кгс/см²). Регулировка клапана обеспечивается установкой необходимого количества деталей 4 и 5.

На отводящем патрубке теплообменника установлен кран (рис. 49a) или пробка (рис. 49б) для слива охлаждающей жидкости.

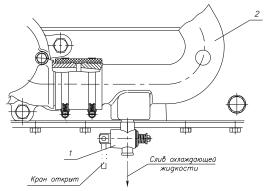


Рис. 49a. Кран слива охлаждающей жидкости: 1 – кран; 2 – патрубок отводящий

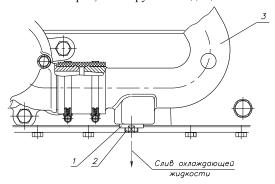
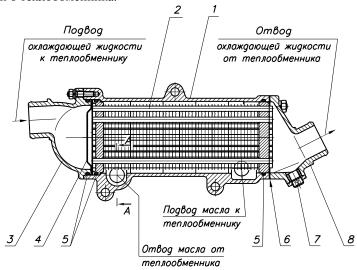



Рис. 496. Пробка слива охлаждающей жидкости: 1 – ввертыш; 2 – пробка сливная; 3 – патрубок отводящий

Конструкция ЖМТ трубчатого типа показана на рис. 50. Теплообменник состоит из корпуса 1, теплопередающего элемента 2, передней 3 и задней 8 крышек. На входе в трубки теплопередающего элемента установлена защитная сетка 4.

Теплопередающий элемент 2 и передняя крышка 3 уплотняются резиновыми кольцами 5. Задняя крышка 8 уплотняется прокладкой 6. В задней крышке 8 устанавливается пробка 7 для слива охлаждающей жидкости из двигателя.

Теплообменник устанавливается на левой стороне блока цилиндров с обеспечением подвода и отвода масла через специальные каналы. При этом уплотнение стыка между ЖМТ и блоком цилиндров осуществляется резиновыми кольцами 5, установленными на втулках 9 (см. разрез А-А). Подвод и отвод охлаждающей жидкости осуществляется через патрубки крышек 3 и 8 теплообменника.

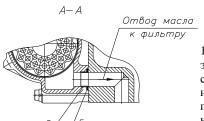


Рис. 50. Жидкостно-масляный теплообменник:

1 — корпус; 2 — теплопередающий элемент; 3 — крышка передняя; 4 — сетка защитная; 5 — уплотнительные кольца; 6 — прокладка; 7 — пробка сливная; 8 — крышка задняя; 9 — втулка

ЭЛЕКТРООБОРУДОВАНИЕ

Электрооборудование работает в однопроводной системе постоянного тока с номинальным напряжением 24В. Отрицательный полюс источника тока соединяется с корпусом.

ГЕНЕРАТОРЫ

На силовой агрегат, в зависимости от модели и комплектации могут устанавливаться генераторы нескольких моделей (см. раздел «Комплектация»).

Г-273В2

Генераторная установка Г-273В2 состоит из трехфазного синхронного генератора переменного тока с электромагнитным возбуждением, встроенных выпрямительного блока БПВ 46-65-02 и интегрального регулятора напряжения Я120М1.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА ГЕНЕРАТОРА Г-273В2

Номинальное напряжение, В	28
Выпрямленный ток, А, не менее	45
Начальная частота вращения ротора при температуре окружающей среды и генератора 25±10°С и напряжении 26 В, об/мин, не более:	
при токе нагрузки 10 А	1670
при токе нагрузки 20 А	2250
Ток возбуждения, А	$3,9\pm0,2$
Напряжение генератора (напряжение настройки	и интегральн

Напряжение генератора (напряжение настройки интегрального устройства) в положении посезонной регулировки «лето» при токе нагрузки 10±0,5 А, частоте вращения ротора генератора 3500±105 об/мин, температуре окружающей среды 25±10°С и включенной аккумуляторной батарее должно находиться в пределах 27...28 В, а при положении посезонной регулировки «зима» должно быть на 1,5...3 В выше

Давление на щетки при сжатии пружин до 17.5 мм, Н (кгс)	$2,16\pm0,30$ $(0,216\pm0,03)$
Масса генератора без шкива, кг, не более	5,2

Генераторная установка Γ -273B2 имеет устройство посезонной регулировки напряжения, которая осуществляется винтом, находящимся на кожухе щеткодержателя. При вывернутом винте обеспечивается летняя регулировка, при ввернутом до упора винте — зимняя регулировка.

Интегральный регулятор напряжения Я120М1 – изделие неразборное и неремонтоспособное.

1322,3771

Генераторная установка 1322.3771 состоит из трехфазного генератора переменного тока, встроенных конденсатора емкостью 2,2 мкФ и интегрального регулятора напряжения Я120М12И предназначенные для работы в качестве источника электрической энергии параллельно с аккумуляторной батареей в системе электрооборудования.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА ГЕНЕРАТОРА 1322.3771

Номинальное напряжение, В	28
Максимальный ток нагрузки генератора, А	47
Начальная частота вращения ротора при температуре окружающей среды и генератора 25±10°С и напряжении 26 В, об/мин, не более:	
при токе нагрузки 10 А	1450
при токе нагрузки 20 А	1750
при токе нагрузки 28 А	2050

Регулируемое напряжение пои температуре окружающей среды $25\pm10^{\circ}\text{C}$, частоте вращения ротора 5000 мин⁻¹ и токе нагрузки 16 A с подключенной аккумуляторной батареей должно быть $28,4\pm0.6$ B.

На генераторе имеются следующие вывода:

- ** + ** для соединения с батареями и нагрузкой;
- « Ш » для соединения с выключателем стартера и приборов, и с контрольной лампой заряда аккумуляторной батареи;
 - « W » вывод фазы для соединения с тахометром.

В крышке со стороны контактных колец установлены: выпрямительный блок; пластмассовый щеткодержатель с регулятором напряжения, закрепленный на крышке двумя винтами; помехоподавляющий конденсатор, установленный сверху на крышке.

Интегральный регулятор напряжения Я120М12И – изделие неразборное и неремонтоспособное.

1702.3771

Генераторная установка 1702.3771 состоит из трехфазного генератора переменного тока, встроенных конденсатора емкостью 2,2 мкФ и регулятора напряжения 2712.3702 предназначенные для работы в качестве источника электрической энергии параллельно с аккумуляторной батареей в системе электрооборудования.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА ГЕНЕРАТОРА 1702.3771

Номинальное напряжение, В	28
Максимальный ток нагрузки генератора, А	50
Частота вращения ротора при температуре окружающей среды и генератора 25±10°С и напряжении 28 В, об/мин, не более:	
без нагрузки	1100
при токе нагрузки 30 А	1900

На генераторе имеются следующие выводы:

- $\ll + \gg -$ для соединения с аккумуляторной батареей и нагрузкой;
 - «-» для соединения с регулятором напряжения;
 - « +Д » для соединения со счетчиком моточасов;
- « Ш » для соединения с регулятором напряжения и пусковой кнопкой (два вывода);
 - « W » вывод фазы для соединения с тахометром.

УСТРОЙСТВО ГЕНЕРАТОРА

Генератор представляет собой трехфазную двенадцатиполюсную синхронную электрическую машину со встроенным выпрямительным блоком, помехоподавляющим конденсатором и щеткодержателем с протяжной вентиляцией.

Генератор состоит из следующих частей: статора; ротора; крышки со стороны контактных колец со встроенным выпрямительным блоком и конденсатором; щеточного узла, устанавливаемого на крышке со стороны контактных колец; крышки со стороны привода; вентилятора и шкива.

Статор набран из отдельных пластин, соединенных в пакет и имеет 36 пазов в которые заложена трехфазная обмотка.

Ротор состоит из катушки возбуждения, намотанной на каркасе, с установленной внутри втулкой, к торцам которой примыкают два полюсных наконечника, образующих двенадцатиполюсную магнитную систему, к которым припаяны концы обмотки возбуждения.

Втулка с катушкой возбуждения, полюсные наконечники, контактные кольца и подшипник напрессованы на вал.

Крышка со стороны контактных колец изготовлена из алюминиевого сплава, имеет вентиляционные окна и лапу для крепления генератора на двигателе.

Крышка со стороны привода изготовлена из алюминиевого сплава, имеет вентиляционные окна и две лапы для крепления генератора на двигателе. В крышке установлен подшипник.

Вентилятор и шкив установлен на вал генератора на шпонке и закреплен гайкой с шайбой.

6582.3701-03

Генераторная установка 6582.3701-03 состоит из трехфазного синхронного генератора переменного тока с электромагнитным возбуждением, встроенных выпрямительного блока БПВ-17-100-02 и интегрального регулятора напряжения типа Я120М1 предназначенные для работы в качестве источника электрической энергии параллельно с аккумуляторной батареей в системе электрооборудования.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА ГЕНЕРАТОРА 6582.3701-03

Номинальное напряжение, В	28
Максимальный ток нагрузки генератора, А	80
Частота вращения ротора при температуре окружающей среды и генератора 25±10°C и напряжении 26 В, об/мин, не более:	
без нагрузки	1180
при токе нагрузки 60 А	2200
Ток возбуждения, А	$3,2\pm0,2$
Давление на щетки при сжатии пружины до 17,5 мм, Н	2,2±0,2

При токе нагрузки 30 А, частоте вращения ротора генератора 3500±175 об/мин, температуре окружающей среды 25±10°C и включенной аккумуляторной батарее напряжение генератора должно находиться в пределах 27,0...28,0 В в положении посезонной регулировки «лето», а при положении посезонной регулировки «зима» должно быть 28,8...30,2 В.

УСТРОЙСТВО ГЕНЕРАТОРА

Генератор состоит из следующих частей: статора; ротора; стороны контактных колец со крышки встроенным выпрямительным блоком, имеющим три дополнительных диода; крышки со стороны привода; щеткодержателя с интегральным регулятором напряжения; вентилятора и шкива.

Статор набран из отдельных пластин, соединенных в пакет и имеет 36 пазов в которые заложена трехфазная обмотка, соединенная по схеме «двойная звезда».

Ротор состоит из напрессованных на вал стальной втулки с катушкой возбуждения и стальных полюсов, прилегающих к втулке и перекрывающих обмотку.

Крышка стороны co контактных колец, имеет вентиляционные окна. В крышку вмонтирован выпрямительный блок

Крышка со стороны привода имеет вентиляционные окна. В крышке установлен подшипник.

Щеткодержатель состоит из щеткодержателя со щетками и интегрального регулятора напряжения.

Вентилятор и шкив установлен на вал генератора на шпонке и закреплен гайкой с шайбой.

Генераторная установка имеет устройство посезонной регулировки напряжения, которая осуществляется винтом, находящимся на кожухе щеткодержателя. При вывернутом винте обеспечивается летняя регулировка, при ввернутом до упора винте – зимняя регулировка.

5702,3701

Генераторная установка представляет трехфазную синхронную машину переменного тока с электромагнитным возбуждением (генератор) со встроенным блоком выпрямителей БПВ7-100-02. Генератор работает совместно с регулятором напряжения 2302.3702, установленном на объекте.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА ГЕНЕРАТОРА

Номинальное напряжение, В	28
Номинальный выпрямительный ток, А	75
Скорость вращения ротора при температуре окружающей среды 25 ± 10^{0} С и напряжении 28 В (при самовозбуждении), мин ⁻¹ , не более:	
без нагрузки	1250
при нагрузке 60А	2350
Ток возбуждения, А	$3,2\pm0,2$
Давление щеточных пружин, кгс	$0,22\pm0,03$
Масса (без шкива), кг	9

СТАРТЕРЫ

Двигатели ЯМЗ могут комплектоваться стартерами модели 25.3708-21 ОАО «ЭЛТРА» г. Ржев или модели AZF 4581 производства фирмы "Искра" (Словения).

Конструкция двигателя предусматривает возможность установки обеих моделей стартеров.

CTAPTEP 25.3708-21

Стартер 25.3708-21 (рис. 51) состоит из электродвигателя, механизма привода и электромагнитного тягового реле. Электродвигатель стартера постоянного тока, последовательного возбуждения, с питанием от аккумуляторных батарей. Для обеспечения надежного соединения с «массой» автомобиля на крышке стартера со стороны коллектора имеется болт для присоединения гибкой токопроводящей перемычки.

Питание стартера осуществляется от аккумуляторных батарей $C_{20}-132~A\cdot ч,~C_{20}-182~A\cdot ч,~C_{20}-190~A\cdot ч,~C_{20}-264~A\cdot ч.$

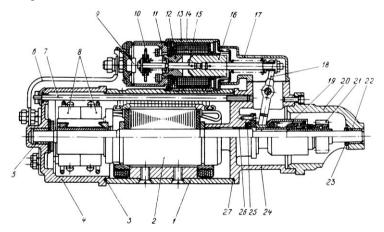


Рис. 51. Стартер:

1-корпус; 2-якорь; 3, 37-уплотнительные кольца; 4-крышка со стороны коллектора; 6-передний подшипник; 6-соединительная шина; 7-стяжная шпилька; 8-щетки; 9-контактные болты; 10-контактный диск; 11-корпус реле; 12-сердечник; 13-удерживающая обмотка реле; 14-втягивающая обмотка реле; 15-шток якоря; 16-якорь реле; 17-кожух; 18-рычаг привода; 19-привод; 20-крышка со стороны привода; 21-шестерня привода; 22-средний подшипник; 23-упорная шайба; 24-корпус привода; 25-сальник; 26-задний подшипник

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА

Номинальное напряжение, В	24
Номинальная мощность, кВт	8,2
Ток холостого хода, А	110
Ток при тормозном моменте 60 H·м (6 кгс·м), A не более	900
Напряжение включения реле стартера, В	18
Давление щеточных пружин, Н (кгс)	15±1,5 (1,5±0,15)
Масса стартера, кг	29
Пусковая мощность, кВт не менее	5,0
Частота вращения якоря на холостом ходу, об/мин	5000

Стартер модели 25.3708-21 в комплекте с его креплением взаимозаменяем со стартером модели AZF 4581 производства фирмы "Искра" (Словения).

CTAPTEP AZF 4581

Ниже приводится краткая техническая характеристика стартера AZF 4581 производства фирмы "Искра" (Словения).

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА

Номинальное напряжение, В	24
Номинальная мощность, кВт	6,5
Ток холостого хода, А	110
Напряжение включения реле-стартера, В	16
Масса стартера, кг	10,5
Частота вращения якоря на холостом ходу, об/мин	8000

Все замечания и предложения по работе стартеров модели AZF 4581 производства фирмы "Искра" (Словения) направлять по адресу: 150040, г. Ярославль, проспект Октября 75, Инженерноконструкторский центр.

ЭЛЕКТРОФАКЕЛЬНОЕ УСТРОЙСТВО

Электрофакельное устройство служит для облегчения пуска холодного двигателя при температуре воздуха до минус 22°С. Устройство подключено к топливной системе двигателя и работает на том же топливе, что и двигатель. Действие его основано на испарении топлива в штифтовых свечах накаливания и воспламенении этих паров с воздухом. Возникающий при этом факел подогревает поступающий в цилиндры двигателя воздух.

В состав электрофакельного устройства входят две электрофакельные свечи 3 (рис. 52), установленные в резьбовые отверстия впускных коллекторов 2 двигателя, электромагнитный топливный клапан 6, термореле с добавочным сопротивлением; кнопочный выключатель, электромагнитное реле и контрольная лампа, устанавливаемые в кабине автомобиля.

На некоторые комплектации двигателей электрофакельное устройство не устанавливается.

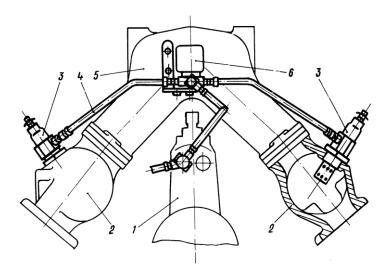
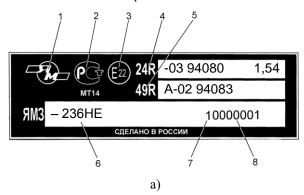




Рис. 52. Схема установки электрофакельного устройства на двигателе:

1-топливный насос высокого давления; 2-впускной коллектор; 3-электрофакельная свеча; 4-топливопроводы; 5-переходник впускных коллекторов; 6-электромагнитный топливный клапан

МАРКИРОВАНИЕ И ПЛОМБИРОВАНИЕ

Маркирование двигателя осуществляется на заводской табличке (см. рис. 53), установленной на верхней площадке в передней части блока цилиндров.

б)

Рис. 53. Заводская табличка:

- а) пример таблички ЯМЗ-236НЕ. Таблички двигателей ЯМЗ-236БЕ, НЕ2, БЕ2 аналогичны по оформлению, но отличаются некоторыми цифрами;
- б) пример таблички двигателя ЯМЗ-236Б-3. Табличка двигателя ЯМЗ-236Н аналогична по оформлению, но отличается некоторыми цифрами

На табличке размещена следующая информация:

- 1 Товарный знак предприятия-изготовителя.
- 2 Знак соответствия национальным стандартам обозначением организации, выдавшей стандарт.

- 3 Знак официального утверждения.
- 4 Соответствие правилам 24R-03 с коэффициентом поглощения.
- 5 Соответствие правилам 49RA-02 по выбросу частиц.
- 6 Модель и комплектация двигателя.
- 7 Год выпуска. Обозначается цифрой или буквой, что соответствует: 1-2001 г.; 2-2002 г. и т.д., A-2010 г., B-2011 г., C-2012 г и т.д.
- 8 Порядковый номер.

Кроме того, год выпуска и номер двигателя продублированы на площадке левого ряда блока цилиндров в задней части двигателя.

Модель топливного насоса высокого давления, его номер и дата выпуска указаны на табличке, закрепленной на корпусе насоса с правой стороны.

Обозначение турбокомпрессора по спецификации и его порядковый номер выбиты на специальной площадке в передней верхней части корпуса компрессора.

На топливном насосе высокого давления моделей 604.5, 604.5-10, 607.5, 607.5-10, 133-20, 133-30 в сборе с регулятором частоты вращения устанавливаются пять пломб завода-изготовителя:

- на люк смотровой регулятора;
- на болт регулировки максимальных холостых оборотов двигателя;
- на крышку корректора;
- на винт под ограничение мощности;
- на боковую крышку ТНВД моделей 604 и 607, на крышку верхнюю ТНВД модели 133.

Пломбирование топливных насосов высокого давления моделей 323.5, 323.5-10, 324.5, 324.5-10, 324.5-10.01 см. в приложении 7.

ВНИМАНИЕ! СНЯТИЕ ПЛОМБ В ГАРАНТИЙНЫЙ ПЕРИОД ЭКСПЛУАТАЦИИ КАТЕГОРИЧЕСКИ **ЗАПРЕЩАЕТСЯ.**

Маркировка коробок передач:

- -типа ЯМЗ-236 и ЯМЗ-2361 на заднем торце картера;
- -типа ЯМЗ-238ВМ, ЯМЗ-2381 и ЯМЗ-336 на специальной площадке картера с левой стороны.

Выбивается модель коробки передач, заводской номер и дата выпуска.

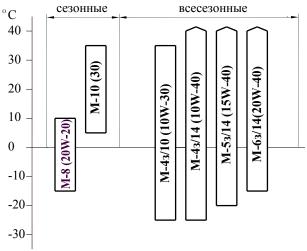
ЭКСПЛУАТАЦИОННЫЕ МАТЕРИАЛЫ

Надежная работа двигателя гарантируется при использовании только рекомендуемых заводом эксплуатационных материалов.

Для двигателей ЯМЗ могут применяться топлива, смазочные материалы и охлаждающие жидкости, как российских производителей, так и соответствующие им продукты производства других стран.

ВНИМАНИЕ! ПРИМЕНЕНИЕ ТОПЛИВА, СМАЗОЧНЫХ МАТЕ-РИАЛОВ И ОХЛАЖДАЮЩИХ ЖИДКОСТЕЙ, НЕ УКАЗАННЫХ В НАСТОЯЩЕМ РУКОВОДСТВЕ, **ЗАПРЕЩАЕТСЯ**.

РЕКОМЕНДУЕМЫЕ МАРКИ ТОПЛИВ


Для эксплуатации двигателей применять дизельные топлива:

- 1. Отвечающие требованиям ГОСТ Р 52368-2005 и стандарта EN-590:2009, вида I...III (по содержанию серы):
- для районов с умеренным климатом сортов A, B, C, D, E, F
 с применением при температуре окружающего воздуха не ниже плюс 15; плюс 10; плюс 5; ноль; минус 5; минус 10°C соответственно;
- для районов с холодным климатом классов 0, 1, 2, 3, 4 с применением при температуре окружающего воздуха не ниже минус 10; минус 16, минус 22, минус 28, минус 34°C соответственно.
 - 2. Отвечающие требованиям ГОСТ 305-82:
 - марок Л-0,2-40, Л-0,2-62, Л-0,05-40, Л-0,05-62 при температуре окружающего воздуха 0°С и выше;
 - марки 3-0,2 минус 3, 3-0,05 минус 35 при температуре окружающего воздуха выше минус 20°С;
 - марки 3-0,2 минус 45, 3-0,05 минус 45 при температуре окружающего воздуха выше минус 30°С;
 - марки А-0,2, А-0,05 при температуре окружающего воздуха выше минус 50°C.
 - 3. Отвечающие требованиям следующих ТУ:
 - Экологически чистое дизельное топливо по ТУ 38.1011348-2003:
 - марок ДЛЭЧ-В, ДЛЭЧ при температуре окружающего воздуха 0°С и выше;
 - марки ДЗЭЧ выше минус 20°С.
 - Дизельные топлива для спецтехники и экспорта по ТУ 38.401-58-110-2011:
 - марок ДЭЛ, ДЭЗ, ДЭА вида I, II, III (по содержанию серы) при температуре окружающего воздуха выше плюс 5, минус 15, минус 35°C соответственно.

- Топливо дизельное летнее и зимнее марок по ТУ 38.301-19-155-2009:
 - Л-0,05(0,035)-62, 3-0,05(0,035)-минус 32, 3-0,05(0,035)-минус 38 при температуре окружающего воздуха выше 0, минус 22, минус 28°C соответственно.
- 4. Для улучшения экологических показателей допускается эксплуатация двигателей Евро-0...Евро-1 на дизельном топливе с антидымными присадками:
- марок ДЛМ и ДЗМ по ТУ 38.401947-92 с добавлением присадки Ангарад-2401 по ТУ 38.401956-93 в количестве 0,3% (масс);
- марок Л и 3 по ГОСТ 305-82 с добавлением присадки фирмы "Лубризол" Lz 8288 в количестве 0,1% (масс);
- марок Л и 3 по ГОСТ 305-82 с добавлением присадки ЭКО-1 по ТУ 38.401881-91 в количестве $0.2\pm0.05\%$ (масс).
- 5. Для двигателей ЯМЗ, эксплуатирующихся за рубежом, допускается применение дизельных топлив по стандарту EN-590:2009 или стандартам других государств, идентичных EN-590:2009.
- 6. Для двигателей ЯМЗ, удовлетворяющих экологическим нормативам Евро-2, временно, до обеспечения потребностей автотранспортных средств на территории РФ топливами, отвечающими требованиям ГОСТ Р 52368-2005 и стандарта EN-590:2009, допускается использование топлив по ГОСТ 305-82 с содержанием серы не более 0,05%.
- 7. При содержании серы в топливе более 0.5% рекомендуется сократить вдвое периодичность смены масла.
- 8. В межсезонный период при отсутствии топлива необходимой марки, в порядке исключения, допускается эксплуатация двигателей на смеси дизельного топлива марок Л и 3 (топлив Евро) с керосином осветительным или топливом для реактивных двигателей ТС-1, содержание которых в смеси не должно превышать 50% (об.). Каждые 10% осветительного керосина или реактивного топлива понижают температуру застывания на 5°С.
- 9. Допускается эксплуатация двигателей на дизельных топливах по стандарту EN-590, с добавлением не более 5% биотоплива по стандарту EN-14214, или идентичным стандартам других государств, при условии, что физико-химические показатели полученной смеси соответствуют требованиям стандарта EN-590.

РЕКОМЕНДУЕМЫЕ МАРКИ МАСЕЛ

1. РЕКОМЕНДУЕМЫЕ ДЛЯ ЭКСПЛУАТАЦИИ КЛАССЫ ВЯЗКОСТИ МОТОРНЫХ МАСЕЛ ПО ГОСТ 17479.1-85, В ЗАВИ-СИМОСТИ ОТ ТЕМПЕРАТУРЫ ОКРУЖАЮЩЕГО ВОЗДУХА, °С

Примечание:

В скобках приведены классы вязкости масел SAE – SAEj 300.

2. ПЕРЕЧЕНЬ МОТОРНЫХ МАСЕЛ, ДОПУЩЕННЫХ ДЛЯ ЭКСПЛУАТАЦИИ ДВИГАТЕЛЕЙ ЯМЗ

2.1. МАСЛА ДЛЯ ДВИГАТЕЛЕЙ С ТУРБОНАДДУВОМ, УДОВ-ЛЕТВОРЯЮЩИХ ЭКОЛОГИЧЕСКИМ НОРМАТИВАМ ЕВРО-0 И ЕВРО-1 (ГРУППА МАСЕЛ ЯМЗ-2-97+ЯМЗ-3-02 ПО РД 37.319.034-06)

Марка масла	Номер стандарта	Предприятие-изготовитель
М-10-Д ₂ (м), М-8-Д ₂ (м)	ГОСТ 8581-78	ООО "ЛУКойл- Пермнефтеоргсинтез" ОАО "Завод им. Шаумяна" ОАО "Славнефть - Ярославнефтеоргсинтез" АО "Азмол" г. Бердянск ОАО "Ангарская нефтехи- мическая компания" ОАО "Рязанский нефтепе- рерабатывающий завод" ООО "ЛУКойл – Волго- граднефтепереработка"

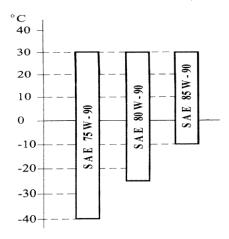
Марка масла	Номер стандарта	Предприятие-изготовитель
Consol M-10- $\Pi_2(M)$ Consol M-8- $\Pi_2(M)$	ГОСТ 8581-78	ООО "ВИАЛ ОЙЛ", г. Москва
Омскойл-Турбо 2 $(M-10-Д_2(M))$	ТУ 38.301-19- 110-97	ОАО "Омский НПЗ"
СамОйл-4126 <u>M-10-Д₂(м)</u> СамОйл-4127 <u>M-63/14-Д(м)</u>	TY 38.301-13- 008-97	ОАО "Новокуйбышевский НПЗ"
ЛУКОЙЛ-Супер (SAE 15W-40, API CD/SF) M-53/14-Д(м)	CTO 00044434- 001-2005	ООО "ЛУКойл – Волго- граднефтепереработка"
ЛУКОЙЛ-Супер (SAE 15W-40, API CF- 4/SG) M-53/14-Д(м)	CTO 00044434- 001-2005	ООО "НОРСИ", г. Кстово
М-43/14-Д	ТУ 0253-006- 08151164	ЗАО «НК «Селект», г. Фрязино, Московской обл.
THK Revolux D1 (SAE 10W-40, 15W-40 API CF-4/CF/SJ)	ТУ 0253-001- 44918199-2005	ООО «ТНК - смазочные материалы»
DexOil Diesel Super (SAE 10W-40, 15W-40, 20W-50 API CF-4/SG)	TY BY 390401182.39-2011	СООО «ЛЛК-Нафтан»

Примечание:

- 1. Для двигателей ЯМЗ с турбонаддувом, удовлетворяющих экологическим нормативам Евро-0, Евро-1, допускается использование масел групп ЯМЗ-4-02 (п. 2.2).
- 2. Для двигателей ЯМЗ с турбонаддувом, работающих за рубежом, допускается применение импортных моторных масел с уровнем эксплуатационных свойств по API не ниже группы CF-4, классов вязкости, указанных в пункте 1.

2.2. МАСЛА ДЛЯ ДВИГАТЕЛЕЙ С ТУРБОНАДДУВОМ, УДОВ-ЛЕТВОРЯЮЩИХ ЭКОЛОГИЧЕСКИМ НОРМАТИВАМ ЕВРО-2 (ГРУППА МАСЕЛ ЯМЗ-4-02 ПО РД 37.319.034-06)

Марка масла	Номер стандарта	Предприятие-изготовитель
Ютек Супердизель (SAE 10W-40, 15W-40, API CF-4/SG) M-43/14-E, M-53/14-E	TV 0253-312- 05742746-2003	ОАО "Ангарская нефтехимическая компания"
ЛУКОЙЛ-Супер (SAE 15W-40, API CF-4/SG) M-53/14-E	CTO 00044434- 001-2005	ООО "ЛУКойл- Пермнефтеоргсинтез"
Рольс Турбо (SAE 15W-40, API CF-4/SF) M-53/14-E	ТУ 38.301-41- 185-99	ОАО "Рязанский НПЗ"


Марка масла	Номер стандарта	Предприятие-изготовитель
Спектрол Чемпион	ТУ 0253-15-	ЗАО ПГ «Спектр- Авто»
(SAE 15W-40, API	06913380-98	г. Москва
CF-4/SG) M-53/14-E		
ВНИИ НП	ТУ 38.401-58-	ОАО «Роснефть МОПЗ
М-53/16-Д2	309-2002	«Нефтепродукт»
Лукойл-Супер	CTO 00044434-	ОАО «ЛУКойл-
(SAE 10W-40 API	001-2005	Нижегороднефтеоргсинтез»
CF-4/SG) M-43/14-E		T T T T T T T T T T T T T T T T T T T
Экойл-Турбодизель	ТУ 0253-009-	000 Harriston - Vita
(SAE 5W-40, 10W-40, 15W-40, API CF-4/SJ)	39968232-2003	ООО «ПромЭко», г. Уфа
THK Revolux D2		
(SAE 10W-40, 15W-40	ТУ 0253-002-	ООО «ТНК - смазочные
API CG-4/CF/SJ)	44918199-2005	материалы»
Роснефть Махітит		
Diesel (SAE 5W-40,	ТУ 0253-061-	ООО «Новокуйбышевский
10W-40, API CF-4/SJ)	48120848-2008	завод масел и присадок»
Роснефть Optimum	ТУ 0253-056-	ОАО «Ангарская нефтехи-
Diesel (SAE 15W-40,	48120848-2008	мическая компания»
API CF-4/SJ)		
Дизель Экстра	ТУ 38.301-19-136-	
(SAE 10W-40, 15W-	2002	
40, API CF-4/CF/SG)	2002	
Дизель Приоритет	ТУ 38.301-19-	
(SAE 10W-40, 15W-40,	138-2005	ООО «Газпромнефть-
API CG-4/CF-4/CF/SJ)		смазочные материалы»
G-Profi MSH (SAE 10W-	-	
40, 15W-40, API CH-4/SJ)		
G-Profi MSF (SAE 10W-40, 15W-40, API CFF-4/SG)	-	
ZIC SD 5000 (SAE 30,		
10W-30, 15W-40, API CF-4)	-	SK Corporation (Корея)
Татнефть-Профи		
(SAE 5W-40, 10W-40,	ТУ 0253-002-	ООО «Татнефть-
15W-40, API CF-4/SH, SG)	54409843-2006	Нижнекамскнефтехим-Ойл»
Consol Титан Транзит	TN 0252 007	000 (DILAT 0117)
(SAE 15W-40, API CF-4/	ТУ 0253-007-	000 "ВИАЛ ОЙЛ",
SG) M-53/14-E	17280618-2000	г. Москва
SELECT Lubricants	TV 0252 005	ЗАО «НК «Селект»,
Magnum (SAE 10W-40,	ТУ 0253-005- 53963514-05	зао «нк «селект», г. Фрязино, Московской обл.
15W-40, API CF-4/SG)	33903314-03	1. Фрязино, Московской обл.
Mobil Delvac Super		
1400 E (SAE 15W-40,	-	Компания Exxon Mobil
API CG-4/CF/SJ)		

Марка масла	Номер стандарта	Предприятие-изготовитель
Shell Rimula R2) (SAE 10W-30, 15W-40, API CF-4/SG)	ı	Shell East Europe Co
Ravenol Turbo-Plus SHPD, (SAE 10W-30, 15W-40, API CI-4/CH-4/ CG-4/CF/SL) Ravenol Expert SHPD (SAE 10W-40, API CI-4/ CH-4/CG-4/CF/SL)	-	Компания Ravensberger Schmierstoffvertrieb GmbH, Deutschland

Примечание:

- 1. Для двигателей ЯМЗ, удовлетворяющих экологическим нормативам Евро-2, рекомендуется работа только на указанных выше всесезонных маслах со сроком смены 1000 часов.
- 2. Для двигателей ЯМЗ с турбонаддувом, удовлетворяющих экологическим нормативам Евро-2, допускается использование масел групп ЯМЗ-2-97 \div ЯМЗ-3-02 (п. 2.1) со сроком смены вдвое меньшим, чем для масел групп ЯМЗ-4-02.
- 3. Для двигателей ЯМЗ с турбонаддувом, удовлетворяющих экологическим нормативам Евро-2 и работающих за рубежом, допускается применение импортных моторных масел с уровнем эксплуатационных свойств по АРІ не ниже группы СG-4, классов вязкости, указанных в пункте 1.

3. РЕКОМЕНДУЕМЫЕ ДЛЯ ЭКСПЛУАТАЦИИ КЛАССЫ ВЯЗКОСТИ ТРАНСМИССИОННЫХ МАСЕЛ В ЗАВИСИ-МОСТИ ОТ ТЕМПЕРАТУРЫ ОКРУЖАЮЩЕГО ВОЗДУХА, ⁰С

4. ПЕРЕЧЕНЬ ТРАНСМИССИОННЫХ МАСЕЛ, ДОПУЩЕННЫХ ДЛЯ ЭКСПЛУАТАЦИИ КОРОБОК ПЕРЕДАЧ ЯМЗ

Марка масла	Номер стандарта	Предприятие-изготовитель
ТСп-15К SAE 85W-90 GL-3	ГОСТ 23652-79	ОАО "Омский НПЗ", ОАО "Ярославский НПЗ им. Менделеева"
ТСп-15К SAE 80W-90 GL-3	ГОСТ 23652-79	ООО "ЛУКОЙЛ – Волго- граднефтепереработка", ООО НПЦ "ИсанТАТ"
Ангрол ТСп-15К SAE 85W-90 GL-3	ГОСТ 23652-79	ОАО "Ангарская нефтехи- мическая компания"
ТАД - 17И SAE 85W-90 GL-5	ГОСТ 23652-79	ОАО "Завод им. Шаумяна" ООО "ЛУКОЙЛ – Волго- граднефтепереработка"
Омскойл К SAE 80W-90 GL-3	ТУ 0253-019- 00219158-95	ОАО "Омский НПЗ"
"Яр.МаркаТ" SAE 80W-90 GL-3 ЯрМарка Супер Э SAE 80W-90 GL-5 ЯрМарка Гипоид SAE 85W-90 GL-5	TY 0253-019- 00219158-95 TY 0253-018- 00219158-96 TY 0253-021- 00219158-96	ОАО "Славнефть – Ярославнефтеоргсинтез"
TM-3-18к SAE 85W-90 GL-3	ТУ 0253-005- 57352960-02	ОАО "Орскнефтеоргсинтез"
ЛУКОЙЛ ТМ типа ТСп-14гип SAE 85W-90 GL-5	ТУ 38.40144- 2001	ООО "ЛУКОЙЛ – Волгограднефтепереработка"
ЛУКОЙЛ ТМ-5-18 SAE 75W-90 GL-5	ТУ 38.601- 07-23-03	ООО "ЛУКОЙЛ – Нижегороднефтеоргсинтез" ООО "ЛУКОЙЛ –
ЛУКОЙЛ ТМ-5 SAE 85W-90 GL-5	ТУ 0253-071- 00148636-95	Пермнефтеоргсинтез"
Татнефть ТМ-5-18 SAE 75W-90 GL-5	ТУ 0253-003- 54409843-03	ООО "Татнефть – Нижнекамскнефтехим-Ойл"
TITAN 5 SPEED SL SAE 75W-90 GL-5LS/ GL-5/GL-4/GL-3	-	FUCHS PETROLUB AG г. Маннгейм ООО "ФУКС ОЙЛ" г. Ярославль
Mobilube 1SHC SAE 75W-90 GL-5/GL-4/MT1 Mobilube GX SAE 80W-90 GL-4	-	Компания "Exxon Mobil"
Транс КП-4 SAE 80W-90 GL-4	_	ООО "Газпромнефть – смазочные материалы"
Нафтан Т SAE 80W-90 GL-3	TY 0253-033- 00219158 -98	ОАО «Нафтан», Беларусь

Примечание: Для коробок, эксплуатирующихся за рубежом, допускается применение импортных трансмиссионных масел с уровнем эксплуатационных свойств по API не менее GL-4, классов вязкости, указанных в пункте 3.

5. ПЕРЕЧЕНЬ МАСЕЛ, ИСПОЛЬЗУЮЩИХСЯ ПРИ ПЕРВОЙ ЗАПРАВКЕ ДВИГАТЕЛЕЙ ЯМЗ

Заправка двигателей маслами первой заливки производится на ОАО «Автодизель или на предприятиях, изготавливающих изделия с двигателями ЯМЗ.

Марка масла	Номер стандарта	Предприятие-изготовитель	
Газпромнефть МПЗ-ГАЗ:	CTO 94025624 016 2000	ООО «Газпромнефть –	
Марка 1; Марка 2	C1O 84033024-010-2009	Смазочные материалы»	
Лукойл-МЗк	CTO 00148636-003-2007	НК «Лукойл»	
DexOil Diesel Super (SAE 10W-	ТУ ВҮ 390401182.39-	СООО «ЛЛК-Нафтан»	
40, 15W-40 API CF-4/SG)	2011	СООО «ЛЛК-пафтан»	

Масло первой заливки подлежит сливу после обкаточного периода при ТО по окончании периода обкатки (через 50 часов).

РЕКОМЕНДУЕМЫЕ ОХЛАЖДАЮЩИЕ ЖИДКОСТИ

Марка	Номер стандарта	Предприятие-изготовитель	
Тосол-А40М* Тосол-А65М* Тосол –АМ*	TV 6-57-95- 96	ООО «ЛУКойл-Пермнефтеоргсинтез» АО «Оргсинтез», г. Дзержинск Нижегородской обл. АО «Оргсинтез», г. Казань АО «Синтез Каучук», г. Казань СП «САГОЭР», г. Нижнекамск СП «СИНИОН», г. Нижнекамск ООО «Химресурс», г Москва ОАО «Пермский завод смазоки СОЖ», г. Пермь ООО «Нова-Нефтехим», г. Дзержинск Нижегородской обл.	
Тосол А-40М	ТУ 2422-002-		
Тосол А-65М	41651324-99	ООО «Инфант Про», г. Кострома	
Тосол А-40М	ТУ 2422-002-	ООО «НПП Спецавиа», Тверская обл.	
1000JI A-40WI	26759308-95	Конаковский р-н, п.г.т. Редкино	
Тосол Э40	ТУ 2422-001-	ООО «Дзержинскхимпромсервис»,	
Тосол Э65	47536305-97	г. Дзержинск Нижегородской обл.	
ОЖ-40 Лена* ОЖ-65 Лена*	ТУ 113-07-02- 88	ОАО «Сибур-Нефтехим», г. Дзержинск Нижегородской обл.; ООО «НПП Спецавиа», Тверская обл. Конаковский р-н, п.г.т. Редкино; ЗАО «Завод органических продуктов», г. Дзержинск Нижегородской обл.	

Марка	Номер стандарта	Предприятие-изготовитель	
ОЖ-40* ОЖ-65*	ГОСТ 28084-89	УОЗ МНХП, г. Уфа	
Cool Stream Standard 40**	ТУ 2422-002- 13331543-2004	ОАО «Техноформ», Московская область, г. Климовск	
Премиум-С (Premium-С) Премиум-40 (Premium-40) Премиум-65 (Premium-65)	TY 2422-002- 58113890-2005	ЗАО «Рустрансавто», г Москва	
ОЖ-К «Сибур-Премиум» ОЖ-40 «Сибур-Премиум» ОЖ-65 «Сибур-Премиум»	TY 2422-054- 52470175-2006	ОАО «Сибур-Нефтехим», г. Дзержинск Нижегородской обл.	
Тосол-Север-40	ТУ 2422-001- 52600040-2000	ООО "Гелена Химавто", г. Москва	
Sintec Антифриз LUX G12+(S12+) (ОЖ-К, ОЖ-35, ОЖ-40, ОЖ-65)**	ТУ 2422-047- 51140047-2007	ЗАО «Обнинскоргсинтез», г. Обнинск	
Cool West Advance C** (концентрат) Cool West Advance 40** Cool West Advance 65**	TY 2422-005- 14331137-2007	ЗАО «Завод органических продуктов», г. Дзержинск Нижегородской обл.	
Концентрат госола «Felix [®] » Госол (- 45) «Felix [®] » Госол (- 65) «Felix [®] »	ТУ 2422-006- 36732629-99	ООО «Тосол-Синтез-Инвест», г. Дзержинск Нижегородской обл.	
Концентрат антифриза X-Freeze Carbox [®] (Felix [®] Carbox [®])** Антифриз «X-Freeze Carbox [®] » (Felix [®] Carbox [®])** Антифриз (-65) «X-Freeze Carbox [®] » (Felix [®] Carbox [®])**	TУ2422-068- 36732629-2006	ООО «Тосол-Синтез-Инвест», г. Дзержинск Нижегородской обл.	

Примечания:

- 1. Указанные охлаждающие жидкости предназначены для круглогодичного использования в системе охлаждения двигателей ЯМЗ в течение 3 лет с последующей заменой.
- 2. Для двигателей, эксплуатирующихся за рубежом, рекомендуются жидкости на основе этиленгликоля, соответствующие требованиям спецификаций SAE J 1034 (США), ASTM D6210, D4985 (США), ANFOR NF R 15-601 (Франция).
- 3. Концентрат ОЖ-К предназначен для приготовления рабочих охлаждающих жидкостей ОЖ-65 и ОЖ-40 (ОЖ-35) путем разбавления водой в пропорциях, указанных в НТД на конкретную марку жидкости.
- 4. Охлаждающую жидкость марки ОЖ-35 рекомендуется использовать при температурах окружающего воздуха не ниже минус 35°C, марки ОЖ-40 не ниже минус 40°C, марки ОЖ-65 не ниже минус 65°C.
- 5. Охлаждающие жидкости, отмеченные знаком *, включены в ограничительный перечень ГОСТ РВ 50920-2005 и рекомендуются для двигателей ЯМЗ, поставляемых для изделий МО РФ.
- 6. Охлаждающие жидкости, отмеченные знаком **, относятся к классу карбоксилатных охлаждающих жидкостей.

При использовании карбоксилатных охлаждающих жидкостей в условиях эксплуатации доливы в систему охлаждения рекомендуется производить аналогичными карбоксилатными жидкостями.

Перед первой заливкой карбоксилатной охлаждающей жидкости необходимо слить старую жидкость, систему охлаждения промыть дистиллированной или отстоянной прокипяченной водой и после этого залить новую жидкость.

- 7. При отсутствии рекомендованных охлаждающих жидкостей допускается в качестве охлаждающей жидкости применение воды, удовлетворяющей следующим требованиям:
 - степень жесткости не более 2,15 (мг×экв)/л (43 мг/л CaO);
 - водородный показатель pH (при 20°C) 6-8;
 - содержание ионов Cl не более 100 мг/л;
 - содержание ионов SO₄ не более 100 мг/л;
 - общее содержание солей (остаток после испарения) не более 200 мг/л.

В случае жесткости воды более 2,15 (мг \times экв)/л произвести ее «умягчение». Для этого добавить в воду карбонат натрия (Na_2CO_3) в количестве 0,4 %. «Умягчение» воды проводить вне системы охлаждения двигателя, т.к. эта операция сопровождается выделением солей кальция и магния, которые удалить отстаиванием и фильтрацией.

Для частичного устранения жесткости воду прокипятить и дать ей отстояться, а затем профильтровать.

РЕКОМЕНДУЕМЫЕ ФИЛЬТРУЮЩИЕ ЭЛЕМЕНТЫ И СМЕННЫЕ ФИЛЬТРЫ

Предприятие- изготовитель	Обозначение и наименование	Номер стандарта, ТУ и ДИ	
СОАО «ДИФА» Республика Беларусь, г. Гродно, ул. Белуша, 45 тел. (0152) 75-55-22 факс (0152) 75-58-60 «Торговый дом автофильтр ДИФА» г. Москва, ул. Яблочкова, 5, тел./факс (495) 979-57-79, 979-89-37	840.1012039 (040)-12 (М5302) бумага ЭФ очистки масла	OCT 37.001.417-90 TV 37.319.211-84	
	840.1012039 (040)-15 (М5203) синт. полотно ЭФ очистки масла	OCT 37.001.417-90 840-1012040-14 ДИ	
	ЛДКЯ 387639.004 (код 8.9642) бумага Фильтр сменный для топлива «DIFA 6103»	ГОСТ 14146-88 ТУ 37.319.210-84	
ООО «МАНН+ХУММЕЛЬ» РФ, г. Москва, ул. Коненкова, 11А	536.1117075 (код 8.9133) бумага Фильтр сменный для топлива WDK 940/1 (66 505 59 658)	ГОСТ 14146-88 ТУ 37.319.210-84	
ОАО «Автоагрегат», РФ г. Ливны, Орловская обл., ул. Индустриальная, 2А, тел. (48677) 3-27-69 факс (48677) 3-20-36		ГОСТ 14146-88 ТУ 37.319.210-84	
ООО Костромское ПО «Автофильтр» ВОС, РФ, 156007, г. Кострома, ул. Пушкина, 43 тел./факс (0942) 55-08-11, 55-09-91, 55-09-11	201.1105540 (538) ровничная пряжа х/б ЭФ предварительной очистки топлива	ГОСТ 14146-88 ТУ 37.319.076-79	
ЗАО "МЕТИЗ" Ярославская обл., г. Тутаев, ул. Строителей, 9а, тел. (08533) 2-08-89	840.1012039 (040)-14 (М5203) синт. полотно ЭФ очистки масла	OCT 37.001.417-90 840-1012040-14 ДИ	

На двигателях ЯМЗ применять фильтрующие элементы и сменные фильтры, имеющие Сертификат соответствия, выданный соответствующим центром по сертификации, и изготовленных в период действия допуска на применение, выданного ОАО «Автодизель».

РЕКОМЕНДУЕМЫЕ ПЛАСТИЧНЫЕ СМАЗКИ

	Узел	Марка	ТУ	Предприятие- изготовитель	
	Шлицевая часть вала якоря привода стартера	Лита	ТУ 38.1011308- 90	Ростовский ОНМЗ	
		ЦИАТИМ-201	ГОСТ 6267-74	Ростовский ОНМЗ	
Двигатель	Подшипники водяного насоса Подшипники шкива натяжного устройства	оса Литол - 24 ГОСТ211.		Бердянский ОНМЗ ПО "Омскнефте- оргсинтез" 7 Ростовский ОНМЗ ОАО "Славнефть- Ярославнефтеорг- синтез"	
		ЦИАТИМ-201	ГОСТ 6267-74	Ростовский ОНМЗ	
Коробка передач и сцепление	Муфта выключения сцепления Подшипник вала вилки выключения сцепления	ШРУС -4	ТУ 0254-001- 05766076-98	Ростовский ОНМЗ Ростовский ОНМЗ	
		ШРУС-4М	ТУ 38401-58- 128-95		
	Подшипник первичного вала коробки передач (в коленчатом вале двигателя)	Лита	ТУ 38.1011308- 90		
	Воздухораспреде- литель	№ 158	ТУ38.1011308- 90	Ростовский ОНМЗ	
		Литол - 24	ГОСТ 21150-87	Бердянский ОНМЗ ПО "Омскнефтеоргсинтез" Ростовский ОНМЗ ОАО "СлавнефтьЯрославнефтеоргсинтез"	
		ЦИАТИМ-201	ГОСТ 6267-74	Ростовский ОНМЗ	

ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

При эксплуатации двигателя необходимо соблюдать следующие ниже требования безопасности. Помните, что соблюдение техники безопасности необходимо прежде всего для Вас:

- Внимательно изучите настоящее руководство по эксплуатации двигателя, прежде чем приступить к его эксплуатации.
- Перед началом работы осмотреть двигатель, убедиться в его исправности и только тогда приступать к его запуску. Для облегчения запуска при низких температурах запрещается пользоваться открытым пламенем для прогрева трубопроводов и масла в поддоне двигателя.
- Заправку топливом и маслом производить с помощью насосной установки, оборудованной фильтром тонкой очистки.
- Ежедневно проверять состояние трубопроводов и соединений. Не допускать подтеканий топлива и масла. Своевременно очищать и вытирать все части двигателя.
- Во время пуска и работы двигателя не допускать к нему посторонних лиц.
- Во время пуска, работы и после остановки двигателя запрещается останавливать крыльчатку вентилятора с помощью каких-либо подручных средств.
- Не смазывать, не регулировать и не обтирать работающий двигатель.
- При выполнении работ по техническому обслуживанию, осмотру и ремонту пользуйтесь низковольтным освещением до 36В.
- Запрещается прогревать двигатель в закрытых помещениях с плохой вентиляцией во избежание отравления угарным газом.
- При проведении технического обслуживания использовать только исправный инструмент, соответствующий своему назначению.
- При перегреве двигателя крышку заливной горловины в системе охлаждения открывать в рукавицах, соблюдая осторожность, т. к. может произойти выброс горячей воды и пара.
- Избегать возможности получения ожогов при сливе масла. Помните, что ожоги от масла носят химический характер.
- Помните, что этиленгликолевые жидкости и "Тосол" ядовиты при попадании внутрь организма.
- При тушении разлитого воспламенившегося топлива применять огнетушители, засыпать пламя песком, накрыть асбестовым одеялом, войлоком или брезентом. Не заливать пламя водой.
- При проведении электросварочных работ непосредственно на автомобиле с целью предотвращения выхода из строя релерегулятора необходимо отключить выключатель «массы» и отсоединить провод с клеммы «+» генератора. Провод массы сварочного аппарата должен быть подсоединен в непосредственной близости от сварного шва.

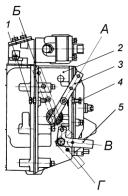
ПУСК, РАБОТА И ОСТАНОВКА СИЛОВОГО АГРЕГАТА

ПОДГОТОВКА К ПУСКУ НОВОГО СИЛОВОГО АГРЕГАТА, А ТАКЖЕ, ПОСЛЕ ДЛИТЕЛЬНОЙ СТОЯНКИ, ТО, РЕМОНТА

Правила настоящего раздела подготовки к пуску распространяются на первичный пуск силового агрегата в следующих случаях:

нового силового агрегата; силового агрегата, не работавшего длительное время (5 суток и более); силового агрегата, прошедшего очередное техническое обслуживание; после смены масла и(или) масляного фильтрующего элемента; ремонта двигателя, а особенно после замены или ремонта турбокомпрессора и других сборочных единиц и деталей, смазываемых под давлением; капитально отремонтированного силового агрегата.

Первичный пуск следует производить по возможности в теплом помещении. Силовой агрегат к пуску следует готовить в указанной ниже последовательности:


- 1. Удалить консервирующую смазку и очистить от пыли и грязи.
- 2. Произвести тщательный наружный осмотр силового агрегата и установленных на нем агрегатов. Убедиться в отсутствии посторонних предметов.
- 3. Если при длительной стоянке производился ремонт или осмотр с разборкой отдельных узлов и агрегатов, необходимо дополнительно тщательно осмотреть и проверить ремонтировавшиеся или разбиравшиеся агрегаты и узлы, проверить и, при необходимости, отрегулировать тепловые зазоры в приводе клапанов.
- 4. Проверить состояние подвески двигателя и коробки передач, а также соединения в системах смазки, охлаждения и питания.
- 5. Проверить соединения и надежность крепления топливопроводов.
- 6. Проверить надежность соединения и легкость хода деталей механизма управления подачей топлива.

- 7. Очистить от пыли и грязи маслозаливную горловину двигателя, открыть крышку и залить в поддон двигателя, до метки "В" указателя уровня масла, чистое масло рекомендуемой марки в зависимости от температуры окружающего воздуха. После заливки масла горловину плотно закрыть крышкой.
- 8. Очистить от пыли и грязи заливную горловину топливного бака, открыть крышку заливной горловины, убедиться в чистоте топливного бака, залить в бак чистое топливо рекомендуемой марки в зависимости от температуры окружающего воздуха, после чего плотно закрыть заливную горловину крышкой.
- 9. Заполнить топливом систему питания двигателя с помощью ручного топливоподкачивающего насоса.
- 10. Залить в систему охлаждения охлаждающую жидкость рекомендуемой марки.
- 11. Очистить от пыли и грязи маслозаливную и контрольную пробку коробки передач, отвернуть их и залить в картер, до контрольного отверстия уровня масла, чистое масло рекомендуемой марки в зависимости от температуры окружающего воздуха. После заливки масла пробки плотно завернуть.
- 12. Наружным осмотром убедиться в герметичности трубопроводов и агрегатов систем смазки, питания и охлаждения. При необходимости подтянуть соединения. При наличии подтеканий масла после заливки по сливным пробкам двигателя и коробки передач, пробке контрольного отверстия коробки передач произвести их затяжку до устранения подтекания масла (момент затяжки пробок 140...160 H⋅м (14...16 кгс⋅м) для двигателя, 88,3...108 H⋅м (9...11 кгс⋅м) для коробки передач, пробки контрольного отверстия коробки передач крутящим моментом, обеспечивающим отсутствие пропуска масла).
- 13. Установив рычаг регулятора в положение "Г" (рис. 54) выключенной подачи топлива, в течение 10-15 секунд провертывать стартером коленчатый вал двигателя и по показаниям манометра определить наличие давления масла в центральном масляном канале. При наличии давления можно пускать двигатель.

ВНИМАНИЕ! ПУСК, РАБОТА И ОСТАНОВ ДВИГАТЕЛЯ, УКОМ-ПЛЕКТОВАННОГО V-ОБРАЗНЫМ ТОПЛИВНЫМ НАСОСОМ ВЫСО-КОГО ДАВЛЕНИЯ АНАЛОГИЧНО ПРИВЕДЕННОМУ В ДАННОМ РАЗДЕЛЕ С ОСОБЕННОСТЯМИ, ОПИСАННЫМИ В ПРИЛОЖЕНИИ 7.

ПОДГОТОВКА К ПУСКУ ПРИ ЕЖЕДНЕВНОЙ ЭКСПЛУАТАЦИИ

- Убедиться в наличии достаточного количества топлива в баке.
- 2 Проверить уровень масла в поддоне двигателя, при необходимости залить чистое масло до верхней метки указателя уровня масла.
- 3 Проверить наличие охлаждающей жидкости и её уровень в системе охлаждения.
- 4 Проверить надежность соединения и легкость хода деталей механизма управления подачей топлива.
- 5 Заполнить топливом систему питания двигателя с помощью ручного топливоподкачивающего насоса в течение 2-3 минут.
- 6 Наружным осмотром убедиться в герметичности трубопроводов и агрегатов систем смазки, питания и охлаждения.
 - 7 Проверить натяжение ремней привода генератора.
- Для пуска холодного двигателя при температурах 10°C использовать воздуха ниже минус следует электрофакельное устройство. С помощью электрофакельного устройства без подогрева двигатели можно пускать до температуры окружающего воздуха минус 22°С. При более предварительно низких температурах следует прогреть дополнительного пускового помошью двигатель c подогревательного устройства.

ПУСК ДВИГАТЕЛЯ

Рис. 54. Регулятор частоты вращения:

- 1 болт ограничения максимальной частоты вращения; 2 регулятор; 3 рычаг управления регулятором корпус буферной пружины; 4 болт ограничения минимальной частоты вращения; 5 рычаг останова.
- A положение рычага при минимальной частоте вращения холостого хода; Б положение рычага при максимальной частоте вращения; B- положение рычага при работе; Γ положение рычага при выключенной подаче

Рычаг 5 (рис. 54) останова регулятора установить в положение "В" включенной подачи топлива, а рычаг 3 управления регулятором – в положение "А", соответствующее минимальной частоте вращения.

При пуске двигателя зимой рычаг управления регулятором рекомендуется установить в среднее положение.

Для пуска двигателя включить стартер; как только двигатель начнет устойчиво работать, стартер выключить. Продолжительность непрерывной работы стартера не должна превышать 15 секунд при положительной температуре и 20 секунд при отрицательной температуре. Более длительная непрерывная работа стартера приведет к перегреву его электродвигателя и выходу стартера из строя. Если через указанное время двигатель не начнет устойчиво работать, то выключить стартер и, спустя 1-1,5 минуты, повторить пуск.

Если после трех попыток двигатель не начнет работать, следует найти и устранить неисправность.

При неудачном пуске в зимнее время повернуть рычаг останова в положение выключенной подачи, затем в рабочее положение, после чего повторить пуск.

После пуска двигатель должен работать на оборотах холостого хода, не превышающих 1000 об/мин, но не более 5 минут.

ВНИМНИЕ! ЗАПРЕЩАЕТСЯ ПУСК ДВИГАТЕЛЯ ОТ ПОСТОРОН-НЕГО ИСТОЧНИКА ЭЛЕКТРОЭНЕРГИИ С ХАРАКТЕРИСТИКАМИ, ПРЕВЫШАЮЩИМИ 24 В, 500 А, ИЛИ СУММАРНОЙ ЕМКОСТЬЮ АККУМУЛЯТОРНЫХ БАТАРЕЙ СВЫШЕ 270 А·Ч.

ВКЛЮЧЕНИЕ СТАРТЕРА ПРИ РАБОТАЮЩЕМ ДВИГАТЕЛЕ ЗАПРЕШАЕТСЯ

После пуска прогрев двигателя до рабочих температур производить под нагрузкой. Не следует прогревать двигатель, допуская его длительную работу на минимальной частоте вращения холостого хода. Как только двигатель начнет реагировать на изменение подачи топлива и в системе тормозов будет обеспечено нормальное рабочее давление, постепенно увеличивать частоту вращения до средней рабочей и начинать движение на пониженных передачах.

ВНИМАНИЕ! ПОЛНАЯ НАГРУЗКА НЕПРОГРЕТОГО ДО РАБОЧЕЙ ТЕМПЕРАТУРЫ ДВИГАТЕЛЯ **НЕ ДОПУСКАЕТСЯ**

В случае необходимости минимальная частота вращения холостого хода может быть подрегулирована в соответствие с рекомендациями раздела «Установка ТНВД на двигатель».

ПУСК ДВИГАТЕЛЯ С ПОМОЩЬЮ ЭЛЕКТРОФАКЕЛЬНОГО УСТРОЙСТВА (ЭФУ)

ВНИМАНИЕ! ПРИ ПУСКЕ ДВИГАТЕЛЯ С ПРИМЕНЕНИЕМ ЭФУ КАТЕГОРИЧЕСКИ ЗАПРЕЩАЕТСЯ ПОЛЬЗОВАТЬСЯ ПОСТОРОННИМИ ИСТОЧНИКАМИ ЭЛЕКТРОЭНЕРГИИ ПОВЫШЕННОЙ МОЩНОСТИ. ФАКЕЛЬНЫЕ ШТИФТОВЫЕ СВЕЧИ РАССЧИТАНЫ НА РАБОЧЕЕ НАПРЯЖЕНИЕ 19 В. ПРИ ПОВЫШЕНИИ НАПРЯЖЕНИЯ НА СВЕЧАХ СВЫШЕ 21 В СВЕЧИ БЫСТРО ВЫХОДЯТ ИЗ СТРОЯ.

- 1 Подготовить двигатель к пуску как указано выше. Рычаг 5 (рис. 54) останова регулятора установить в положение "В" включенной подачи топлива, а рычаг 3 управления регулятором повернуть в среднее положение.
- 2 Нажать кнопку включения электрофакельного устройства (ЭФУ) и удерживать ее в течение всего времени работы устройства. В период нагрева свечей амперметр в кабине водителя должен показывать разрядный ток около 23 А.
- 3 После загорания контрольной лампочки (ориентировочно через 60-110 секунд после нажатия кнопки включения ЭФУ) включить стартер.
- 4 После пуска двигателя до достижения устойчивой частоты вращения допускается работа электрофакельного устройства, но продолжительностью не более 1 мин. Если двигатель не запустился, повторный пуск произвести в той же последовательности. Очередной прогрев свечи рекомендуется начинать через 20-25 секунд после окончания предыдущего запуска двигателя.

После установки ЭФУ на двигатель или после длительного перерыва в работе прокачать топливную систему, для чего при работающем двигателе нажать кнопку включателя ЭФУ и удерживать ее около 30 секунд после загорания контрольной лампочки.

Вышедшие из строя свечи ремонту не подлежат.

КОНТРОЛЬ ЗА РАБОТОЙ СИЛОВОГО АГРЕГАТА

При эксплуатации двигателя следить за показаниями контрольно-измерительных приборов и сигнальных устройств:

1 Температура охлаждающей жидкости двигателя должна быть в пределах 75...90°С. Допускается кратковременное (до 10 мин) повышение температуры до 95°С. Допускается предельная температура охлаждающей жидкости до 95°С при применении моторных масел повышенной вязкости, не ниже $M-4_3/14$ (SAE 10W-40). При этом допускается кратковременное (до 10 мин) повышение температуры охлаждающей жидкости до 100°С.

После пуска прогрев двигателя до рабочих температур производить под нагрузкой. Не следует прогревать двигатель, допуская его длительную работу на минимальной частоте вращения холостого хода. Как только двигатель реагировать на изменение подачи топлива и в системе тормозов будет обеспечено нормальное рабочее давление, постепенно увеличивать частоту вращения до средней рабочей и начинать движение на пониженных передачах. Полная непрогретого двигателя не допускается. Не допускать работу под нагрузкой при температуре охлаждающей жидкости ниже 50°C, т.к. при этом значительно ухудшается сгорание топлива, на стенках гильз конденсируются продукты неполного сгорания, резко возрастает износ гильз цилиндров и поршневых колец, снижается экономичность Признаком готовности двигателя к принятию нагрузки является его реагирование на изменение подачи топлива.

- 2 Давление масла в магистрали блока прогретого двигателя должно быть в пределах $400...700~\mathrm{kHa}~(4...7~\mathrm{krc/cm^2})$ при номинальной частоте вращения и не менее $100~\mathrm{kHa}~(1,0~\mathrm{krc/cm^2})$ при минимальной частоте вращения коленчатого вала. После длительной эксплуатации двигателя допускается падение давления масла не ниже $300~\mathrm{kHa}~(3,0~\mathrm{krc/cm^2})$ при номинальной частоте вращения и не ниже $50~\mathrm{kHa}~(0,5~\mathrm{krc/cm^2})$ при минимальной частоте вращения холостого хода.
- 3 Если при работе двигателя горит лампа светового сигнализатора масляного фильтра, следует заменить фильтрующие элементы. Работа двигателя со светящейся лампой сигнализатора не допускается. Горение лампочки допускается не более 1 минуты после пуска двигателя.

4 При сигнале индикатора засоренности воздушного фильтра работа двигателя **не допускается**. Произвести обслуживание воздушного фильтра или заменить фильтрующие элементы.

При эксплуатации двигателя в период обкатки допускается выделение смеси топлива и масла через систему выпуска, образование масляных пятен в местах сальниковых уплотнений, не влияющих на расход масла, "потение" в соединениях систем топливоподачи, смазывания и охлаждения, выделение отдельных капель охлаждающей жидкости или смеси ее со смазкой через дренажное отверстие водяного насоса, образование отдельных капель масла и выделение конденсата через сапун, не нарушающие нормальную работу двигателя. По окончании приработки цилиндропоршневой группы выброс топливно-масляной смеси прекращается.

При работе силового агрегата следите за появлением посторонних шумов.

ОСТАНОВКА ДВИГАТЕЛЯ

Перед остановкой двигатель должен в течение 3–5 минут работать без нагрузки при средней частоте вращения коленчатого вала.

Для остановки двигателя, уменьшить частоту вращения до минимальной, после чего, поворотом рычага останова регулятора остановить двигатель.

В зимнее время на время стоянки рычаг останова зафиксировать в положении выключенной подачи.

ОБКАТКА НОВОГО ДВИГАТЕЛЯ

Обкатка двигателя происходит в течение первых 50 часов работы. В этот период рекомендуется избегать полных нагрузок и высоких оборотов двигателя. В период обкатки происходит равномерная приработка деталей цилиндро-поршневой группы, шестерен, подшипников и других деталей в целях сокращения их последующего износа, стабилизируется расход масла. Перегрузка в этот период отрицательно скажется на приработке деталей и повлечет за собой сокращение срока службы двигателя.

По окончании периода обкатки (через 50 часов) выполнять обслуживание в объеме, указанном в разделе «Техническое обслуживание по окончании периода обкатки» настоящего руководства по эксплуатации.

ОСОБЕННОСТИ ЗИМНЕЙ ЭКСПЛУАТАЦИИ

Для обеспечения бесперебойной работы двигателя в зимних условиях своевременно провести сезонное обслуживание, в ходе которого заменить эксплуатационные материалы зимними сортами и при работе руководствоваться общими правилами зимней эксплуатации.

Рекомендуется утеплять топливные баки, фильтр грубой очистки топлива, топливопроводы и аккумуляторные батареи.

В качестве охлаждающей жидкости применять низкозамерзающую охлаждающую жидкость (см. раздел "Эксплуатационные материалы"), соответствующую климатическим условиям. Этиленгликолевые охлаждающие жидкости имеют больший, чем вода, коэффициент объемного расширения, поэтому заливать их в систему охлаждения двигателя нужно на 1,5 литра меньше установленной для воды заправочной емкости.

Необходимо помнить, что антифриз ядовит при попадании внутрь, но в то же время безопасен для наружных кожных покровов и органов дыхания.

Если объем охлаждающей жидкости уменьшился за счет испарения, а не из-за течи, в систему охлаждения добавлять только воду, так как количество этиленгликоля вследствие высокой температуры его кипения остается постоянным.

Если для охлаждения двигателя применяется вода, то при отрицательных температурах окружающего воздуха и при отсутствии подогрева после окончания работы слить воду из системы охлаждения во избежание размораживания двигателя. Другие ограничения по применению воды при отрицательных температурах см. Руководство по эксплуатации изделия.

Электропусковая система двигателей при исправных аккумуляторных батареях и использовании зимних моторных масел и топлив обеспечивает пуск при температурах окружающей среды до минус 10°C. При использовании электрофакельного пуск обеспечивается до устройства минус 22°С. температурах окружающей среды ниже минус 22°C пуск прогрева производить после двигателя дополнительным подогревательным устройством. При зимней эксплуатации следить за температурой охлаждающей жидкости, при ее понижении до 70°C утеплить капот и радиатор защитными кожухами.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Надежная работа силового агрегата и длительный срок его службы обеспечиваются своевременным проведением технического обслуживания. Работы по техническому обслуживанию являются профилактическими, поэтому их выполнение обязательно в строго установленные сроки в течение всего периода эксплуатации. Техническое обслуживание силового агрегата, установленного на автомобиле, следует проводить одновременно с техническим обслуживанием автомобиля.

ОБЩИЕ УКАЗАНИЯ ПО ОБСЛУЖИВАНИЮ

Поддерживать силовой агрегат в чистоте, регулярно очищая его от пыли и грязи. Следить за затяжкой резьбовых соединений.

Техническое обслуживание силовых агрегатов по периодичности и перечню выполняемых работ подразделяется на следующие виды:

Ежедневное техническое обслуживание выполняется один раз в сутки по окончании суточной работы.

Техническое обслуживание по окончании периода обкатки выполняется после первых 50 часов работы двигателя.

Первое техническое обслуживание (ТО-1) выполняется через каждые 250 часов работы двигателя.

Второе техническое обслуживание (ТО-2) выполняется через каждые 1000 часов работы двигателя.

Сезонное техническое обслуживание.

ЕЖЕДНЕВНОЕ ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ (ЕО)

- 1. Проверить работу двигателя.
- 2. Осмотреть двигатель, если необходимо, очистить его от пыли и грязи, устранив возможные подтекания масла, топлива, охлаждающей жидкости. При работе двигателя допускается выделение отдельных капель (не более 3-х капель в минуту) ОЖ через дренажное отверстие, находящееся в нижней части корпуса водяного насоса. Выделение отдельных капель через дренажное отверстие водяного насоса не является признаком неисправности водяного насоса

- 3. Заполнить топливный бак топливом, не ожидая его охлаждения во избежание конденсации паров воды.
 - 4. Проверить уровень масла в картере двигателя.
 - 5. Проверить работу сцепления на транспортном средстве.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ ПО ОКОНЧАНИИ ПЕРИОДА ОБКАТКИ

- 1. Осмотреть двигатель, если необходимо, очистить его от пыли и грязи.
- 2. Подтянуть, при необходимости, резьбовые соединения, устранив возможные подтекания масла, топлива, охлаждающей жидкости.
- 3. Проверить момент затяжки гаек шпилек крепления головок цилиндров и, при необходимости, подтянуть их на двигателях ЯМЗ-236H, ЯМЗ-236Б, ЯМЗ-236HE, ЯМЗ-236БЕ, их комплектациях.
- 4. Проверить и, при необходимости, отрегулировать тепловые зазоры в приводе клапанов механизма газораспределения.
- 5. Проверить и, при необходимости, отрегулировать установочный угол опережения впрыскивания топлива. Не допускать работу двигателя с деформированным пакетом пластин.
- Подтянуть резьбовые соединения муфты привода топливного насоса высокого давления.
- 7. Проверить и, при необходимости, отрегулировать натяжение приводных ремней.
 - 8. Проверить момент затяжки болтов крепления стартера.
- 9. Прогреть двигатель до температуры охлаждающей жидкости 75...90°C.
 - 10. Заменить масло в системе смазки двигателя.
 - 11. Заменить фильтрующий элемент масляного фильтра.
 - 12. Промыть фильтр центробежной очистки масла.
- 13. Провести техническое обслуживание коробки передач с заменой масла (см. раздел «Коробка передач»).
- 14. Провести техническое обслуживание сцепления (см. раздел «Сцепление»), в том числе включая перечень операций ЧЕРЕЗ ОДНО ТО-1 и при проведении ТО-2.

ПЕРВОЕ ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ (ТО-1)

1. Слить отстой из фильтра грубой очистки топлива, после чего пустить двигатель и дать ему проработать 3-4 минуты для удаления воздушных пробок. Зимой отстой сливать ежедневно после окончания работ.

- 2. Проверить натяжение приводных ремней и, при необходимости, отрегулировать.
 - 3. Промыть фильтр центробежной очистки масла.
- 4. При первом ТО-1 проверить момент затяжки гаек шпилек крепления головок цилиндров и, при необходимости, подтянуть их на двигателях ЯМЗ-236Н, ЯМЗ-236Б, ЯМЗ-236НЕ, ЯМЗ-236БЕ, их комплектациях.
- 5. При первом ТО-1 снять форсунки и провести их техническое обслуживание на двигателях ЯМЗ-236НЕ2, ЯМЗ-236БЕ2, их комплектациях. В последующей эксплуатации обслуживание форсунок проводить при ТО-2 (1000 часов).
- 6. Провести техническое обслуживание коробки передач (см. раздел «Коробка передач»).

ЧЕРЕЗ ОДНО ТО-1 (через каждые 500 часов работы)

- 1. При первом ЧЕРЕЗ ОДНО ТО-1 снять форсунки и провести их техническое обслуживание на двигателях ЯМЗ-236H, ЯМЗ-236Б, ЯМЗ-236HE, ЯМЗ-236БE, их комплектациях. В последующей эксплуатации обслуживание форсунок при ТО-2 (1000 часов).
- 2. Заменить масло в системе смазки двигателей ЯМЗ-236H, ЯМЗ-236Б, ЯМЗ-236HE, ЯМЗ-236БЕ, их комплектациях.
- 3. Заменить фильтрующий элемент масляного фильтра на двигателях ЯМЗ-236H, ЯМЗ-236Б, ЯМЗ-236HE, ЯМЗ-236БЕ, их комплектациях. При свечении сигнализатора на прогретом двигателе элемент необходимо заменить не дожидаясь очередного технического обслуживания.
- 4. Заменить фильтрующий элемент фильтра грубой очистки топлива, промыть корпус фильтра на двигателях ЯМЗ-236Н, ЯМЗ-236Б, ЯМЗ-236НЕ, ЯМЗ-236БЕ, их комплектациях. При потере мощности двигателя фильтрующий элемент необходимо заменить не дожидаясь проведения очередного технического обслуживания.
- 5. Проверить и, при необходимости, отрегулировать установочный угол опережения впрыскивания топлива. Не допускать работу двигателя с деформированным пакетом пластин.
- 6. Подтянуть резьбовые соединения муфты привода топливного насоса высокого давления.
 - 7. Подтянуть крепления турбокомпрессора.

ВТОРОЕ ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ (ТО-2)

- 1. Выполнить все операции ТО-1.
- 2. Заменить масло в системе смазки двигателя.
- 3. Заменить фильтрующий элемент масляного фильтра. <u>При</u> свечении сигнализатора на прогретом двигателе элемент необходимо заменить не дожидаясь очередного технического обслуживания.
- 4. Заменить сменный фильтр для топлива фильтра тонкой очистки. При потере мощности двигателя фильтрующий элемент необходимо заменить не дожидаясь проведения очередного технического обслуживания.
- 5. При первом ТО-2 проверить момент затяжки гаек шпилек крепления головок цилиндров и, при необходимости, подтянуть их.
- 6. Проверить и, при необходимости, отрегулировать тепловые зазоры в приводе клапанов.
 - 7. Выполнить пункты 2 7 раздела ЧЕРЕЗ ОДНО ТО-1.
- 8. Снять форсунки с двигателя и провести их техническое обслуживание.
- 9. Снять для проверки топливный насос высокого давление, при необходимости, произвести его подрегулировку. Первую проверку насоса выполнить по окончании гарантийного срока.
- 10. Проверить наличие масла в муфте опережения впрыскивания топлива и, при необходимости, долить на двигателях ЯМЗ-236H, ЯМЗ-236Б, ЯМЗ-236HE, ЯМЗ-236БE, их комплектациях.
- 11. Провести техническое обслуживание воздушного фильтра и впускного тракта (см. разделы «Обслуживание воздушного фильтра» и «Проверка герметичности впускного тракта»). <u>При наличии индикатора засоренности воздушного фильтра обслуживание выполнять по сигналу индикатора.</u>
- 12. Наполнить смазкой полость подшипников натяжного устройства привода компрессора.
- 13. Провести техническое обслуживание генератора (см. раздел «Техническое обслуживание электрооборудования»).
- 14. Смазать муфту выключения сцепления с подшипником и валик вилки выключения сцепления (см. раздел «Сцепление»).
- 15. Провести техническое обслуживание коробки передач (см. раздел «Коробка передач»).

- 16. Через каждые 3000 часов работы проверить легкость вращения, осевой и радиальный люфты ротора турбокомпрессора, при необходимости, провести его техническое обслуживание.
- 17. Через каждые 3000 часов работы заменить масло в муфте опережения впрыскивания топлива на двигателях ЯМЗ-236H, ЯМЗ-236Б, ЯМЗ-236HE, ЯМЗ-236БЕ, их комплектациях.
- 18. Через каждые 3500 часов работы снять стартер с двигателя и провести его техническое обслуживание (см. раздел «Техническое обслуживание электрооборудования»).

СЕЗОННОЕ ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 1. Если двигатель работает на сезонных маслах, необходимо заменить масло на соответствующее предстоящему сезону.
- 2. Заменить топливо на соответствующее предстоящему сезону, топливный бак рекомендуется ополоснуть чистым топливом.
- 3. Осенью, при переходе на зимнюю эксплуатацию, проверить узлы электрофакельного устройства и промыть фильтр-отстойник топлива.
- 4. Осенью, при переходе на зимнюю эксплуатацию и в случае использования в качестве охлаждающей жидкости воды, промыть систему охлаждения.
- 5. Осенью, при переходе на зимнюю эксплуатацию и в случае использования в качестве охлаждающей жидкости воды, необходимо отвернуть резьбовую пробку на отводящем патрубке жидкостно-масляного теплообменника и слить воду с целью исключения его размораживания.

ВНИМАНИЕ! ПЕРИОДИЧНОСТЬ СМЕНЫ МАСЛА НА ДВИГАТЕЛЯХ, СООТВЕТСТВУЮЩИХ ТРЕБОВАНИЯМ ЕВРО-2, ЧЕРЕЗ КАЖДЫЕ 1000 ЧАСОВ ПРИ ИСПОЛЬЗОВАНИИ ТОЛЬКО ВСЕСЕЗОННЫХ МОТОРНЫХ МАСЕЛ (МАСЛА ГРУППЫ ЯМЗ-4-02). ПЕРИОДИЧНОСТЬ СМЕНЫ ФИЛЬТРУЮЩИХ ЭЛЕМЕНТОВ ОЧИСТКИ МАСЛА НА ДВИГАТЕЛЯХ, СООТВЕТСТВУЮЩИХ ТРЕБОВАНИЯМ ЕВРО-2, ЧЕРЕЗ КАЖДЫЕ 1000 ЧАСОВ ПРИ УСЛОВИИ ПРИМЕНЕНИЯ ФИЛЬТРУЮЩИХ ЭЛЕМЕНТОВ ИЗ СИНТЕТИЧЕСКОГО ИГЛОПРОБИВНОГО МАТЕРИАЛА 840-1012039(40)-14, -15. ПРИ ИСПОЛЬЗОВАНИИ В МАСЛЯНОМ ФИЛЬТРЕ НА УКАЗАННЫХ ДВИГАТЕЛЯХ БУМАЖНЫХ ФИЛЬТРУЮЩИХ ЭЛЕМЕНТОВ, ПЕРИОДИЧНОСТЬ СМЕНЫ ЭЛЕМЕНТОВ ЧЕРЕЗ КАЖДЫЕ 500 ЧАСОВ.

ПЕРЕВОД ПЕРИОДИЧНОСТИ ТО В ЧАСАХ НАРАБОТКИ ДВИГАТЕЛЯ К ПЕРИОДИЧНОСТИ ТО В КИЛОМЕТРАХ ПРОБЕГА АВТОМОБИЛЯ

Для каждой модели двигателя ЯМЗ на основании средней величины технической и эксплуатационной скоростей для одной модели автомобилей, эксплуатирующихся в автотранспортном предприятии, принимается расчетная средняя скорость, которая и является величиной для перевода периодичности ТО в часах наработки двигателя к периодичности ТО в километрах пробега автомобиля.

Для автотранспортных предприятий, эксплуатирующих автомобили с двигателями, силовыми агрегатами ЯМЗ, рекомендуется, исходя из опыта подконтрольной эксплуатации, расчет средней скорости одной модели автомобиля производить по формуле:

$$V_{cp} = (V_3 + V_T)/2$$
, где V_3 – средняя эксплуатационная скорость автомобиля; V_T – средняя техническая скорость автомобиля.

Например, при $V_{_{3}}=40$ км/час и $V_{_{T}}=60$ км/час автомобиля, $V_{_{CP}}=(40+60)/2=50$ км/час, при этом замена масла в двигателе ЯМЗ, соответствующего требованиям экологических нормативов Евро-2, должна выполняться при ТО-2 через 50000 км пробега:

1000 часов x 50 км/час = 50000 км.

РЕГУЛИРОВКА ДВИГАТЕЛЯ

РЕГУЛИРОВКА НАТЯЖЕНИЯ РЕМНЕЙ

Привод водяного насоса, компрессора и генератора осуществляется клиновыми ремнями, от надежной работы которых зависит нормальная работа этих агрегатов. Поэтому при повседневном уходе за двигателями предохранять ремни от попадания масла и топлива, контролировать их натяжение и регулировать его. Особенно тщательно проверять натяжение ремней в течение первых 50 часов работы двигателя, так как в это время происходит их наибольшая вытяжка. Натяжение ремней должно быть всегда нормальным, поскольку как излишнее, так и недостаточное натяжение приводит к преждевременному выходу их из строя. Кроме того, чрезмерное натяжение ремня привода водяного насоса может послужить причиной разрушения подшипников насоса.

Нормально натянутый ремень водяного насоса при нажатии на середину длинной ветви с усилием 40 H (4 кгс) прогибается на 10-15 мм (рис. 55) или 7-12 мм (рис. 56), а ремень компрессора – на 4-8 мм на короткой ветви (рис. 58).

Натяжение ремней привода генератора проверять нажатием с усилием 40 H (4 кгс) на середину ветви каждого ремня (рис. 59), при этом ремни привода генератора должны прогибаться на 10 – 15 мм. Если ремни прогибаются больше или меньше указанного, отрегулировать их натяжение.

Натяжение ремня водяного насоса двигателей ЯМЗ-236НЕ, НЕ2, БЕ, БЕ2 (рис. 55) регулировать натяжным устройством, для чего:

- ослабить болты крепления рычага кронштейна натяжного приспособления;
- 2 при помощи воротка Ø12 мм, вставленного в отверстие рычага кронштейна натяжного приспособления, произвести натяжение ремня;
- 3 не ослабляя усилие натяжения затянуть болты крепления рычага кронштейна натяжного приспособления;
- 4 проверить натяжение ремня.

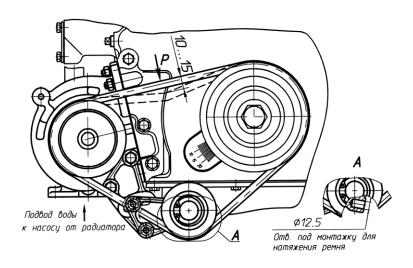


Рис. 55. Проверка натяжения ремня водяного насоса двигателей ЯМЗ-236HE, НЕ2, БЕ, БЕ2

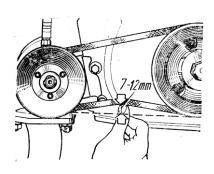


Рис. 56. Проверка натяжения ремня водяного насоса двигателей ЯМЗ-236H,Б

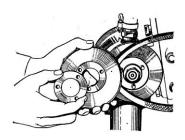
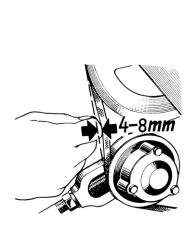



Рис. 57. Снятие регулировочных прокладок

Натяжение ремня водяного насоса двигателей ЯМЗ-236Н,Б регулируйте прокладками (рис. 56, 57). Для натяжения ремня отверните гайки крепления боковины шкива и снимите одну-две регулировочные прокладки (рис. 57). Прокладки поставьте на наружную сторону боковины и последовательно, в несколько приемов, заверните гайки, проворачивая шкив после подтяжки каждой райки. Затем проверьте правильность натяжения ремня. При замене старого ремня новым все прокладки поставьте между ступицей и съемной боковиной шкива и отрегулируйте натяжение ремня, как указано выше.

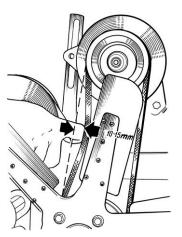


Рис. 58. Проверка натяжения ремня компрессора

Рис. 59. Проверка натяжения ремня генератора

Натяжение ремня привода компрессора регулировать натяжным устройством (рис. 58). Перед регулировкой отвернуть контргайку 2 на один оборот и гайку 1 - на полоборота (рис. 59а). После чего, вращая болт-натяжитель 18 отрегулировать натяжение ремня. После регулировки затянуть гайку 1 и контргайку 2 моментом $120...150~\mathrm{H\cdot m}$.

ВНИМАНИЕ! РЕГУЛИРОВКУ НАТЯЖЕНИЯ РЕМНЯ (УСИЛЕНИЕ ИЛИ ОСЛАБЛЕНИЕ) НЕОБХОДИМО ПРОИЗВОДИТЬ ТОЛЬКО ПОСЛЕ ОТВОРАЧИВАНИЯ ГАЕК 1 И 2, ЧТОБЫ ИСКЛЮЧИТЬ ПОЛОМКУ НАТЯЖНОГО УСТРОЙСТВА КОМПРЕССОРА

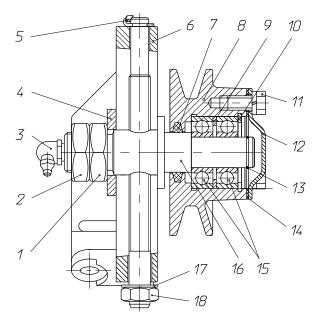


Рис. 59а. Натяжное устройство компрессора:

1 - гайка М22; 2 - контргайка М22; 3 - масленка; 4 - шайба оси вентилятора; 5 - шайба замковая; 6 - кронштейн натяжного устройства; 7 - кольцо СТ 32; 8 - шкив натяжного устройства; 9 - кольцо распорное; 10 - кольцо пружинное; 11 - болт М8; 12 - крышка шкива; 13 - кольцо стопорное; 14 - прокладка крышки; 15 - подшипники 203А или 6-203А; 16 - ось шкива; 17- шайба 12; 18 - болт - натяжитель

В процессе эксплуатации предусматривается наполнение смазкой через масленку 3 полости подшипников натяжного устройства при ТО-2 через каждые 1000 часов работы двигателя (см. раздел «Техническое обслуживание»).

Натяжение ремня привода генератора регулировать перемещением генератора относительно оси его крепления. Перед регулировкой ослабить затяжку болтов крепления генератора, гайку крепления планки генератора и болт крепления генератора к планке. После регулировки надежно закрепить генератор. При увеличенной вытяжке и обрыве хотя бы одного из ремней привода генератора заменить комплектом оба ремня для обеспечения равномерной нагрузки на них.

РЕГУЛИРОВКА НАТЯЖЕНИЯ ПОЛИКЛИНОВОГО РЕМНЯ ПРИВОДА ГЕНЕРАТОРА

Привод генератора осуществляется поликлиновым ремнем на двигателях ЯМЗ, которые комплектуются вентилятором с вязкостной муфтой или приводом вентилятора с упругой муфтой.

Для обеспечения безотказной работы ремня необходимо предохранять его от попадания топлива и масла.

При техническом обслуживании двигателя контролировать и, при необходимости, регулировать его натяжение (см. раздел «Техническое обслуживание» настоящего руководства).

Особенно тщательно проверять натяжение ремня в течение первых 50 часов работы двигателя, так как в этот период происходит его наибольшая вытяжка.

Натяжение ремня привода генератора проверять нажатием на середину ветви ремня с усилием $90 \pm 0,45$ H ($9,2 \pm 0,4$ кгс), при этом величина прогиба ветви ремня должна быть 14...15 мм (см. рисунок 59б).

Если ремень прогибается больше или меньше указанного, отрегулировать его натяжение. Слабое или тугое натяжение приводит к преждевременному выходу ремня из строя. При увеличенной вытяжке или обрыве ремень заменить на новый.

Натяжение ремня 3 привода генератора (см. рисунок 59б) регулировать перемещением генератора 6 относительно оси его крепления. Перед регулировкой ослабить затяжку болтов 4, 7 крепления генератора и гайки 10 пальца 8, болта 5 крепления генератора к планке 1 и гайки 9 крепления планки к верхней крышке блока.

Генератор после регулировки ремня надежно закрепить.

Затяжку деталей крепления генератора производить моментом:

- болтов 5, 7 и гайки 9 11,76...17,65 Н·м (1,2...1,8 кгс·м);
- болта 4 и гайки 10 23,53...35,30 Н⋅м (2,4...3,6 кгс⋅м).

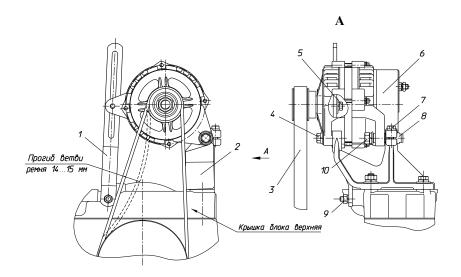


Рис. 59б. Регулировка натяжения поликлинового ремня привода генератора:

1 - планка; 2 - кронштейн крепления генератора; 3 - ремень поликлиновой 6РК-860; 4 - болт М10-6gx35; 5 - болт М8-6gx20;

6 - генератор; 7 - болт М8-6gx25; 8 - палец крепления генератора;

9 - гайка М8-6Н; 10 - гайка М10-6Н.

ПОДТЯЖКА КРЕПЛЕНИЯ ГОЛОВКИ ЦИЛИНДРОВ

Проверить момент затяжки гаек шпилек крепления головок цилиндров тарированным ключом в холодном состоянии двигателя и, при необходимости, подтянуть их до момента 235...255 Н'м (24...26 кгс'м). Затяжку гаек производить в последовательности, показанной на рис. 60, в порядке возрастания номеров.

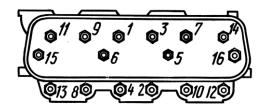


Рис. 60. Порядок затяжки гаек шпилек крепления головок цилиндров

ВНИМАНИЕ! КАТЕГОРИЧЕСКИ ЗАПРЕЩАЕТСЯ ЗАТЯГИВАТЬ ГАЙКИ МОМЕНТОМ БОЛЬШИМ, ЧЕМ УКАЗАНО, ТАК КАК ЭТО ПРИВЕДЕТ К ОБРЫВУ ШПИЛЕК И ПОЛОМКАМ ГОЛОВОК ЦИЛИН-ДРОВ, А ГЕРМЕТИЧНОСТЬ СОЕДИНЕНИЯ ЭТИМ НЕ ВОССТАНОВИТСЯ. ПРИ УСТАНОВКЕ ГОЛОВКИ ЦИЛИНДРОВ НА ДВИГАТЕЛЬ ИЛИ ЗНАЧИТЕЛЬНЫМ ОСЛАБЛЕНИЕМ ЗАТЯЖКИ ЗАТЯГИВАТЬ ГАЙКИ НЕ МЕНЕЕ ЧЕМ ЗА ТРИ ПРИЕМА (СМ. РАЗДЕЛ «РЕМОНТ»)

После подтяжки гаек шпилек крепления головок цилиндров отрегулировать тепловые зазоры в клапанном механизме и установить крышки головок цилиндров.

РЕГУЛИРОВКА ЗАЗОРОВ В КЛАПАННОМ МЕХАНИЗМЕ

Тепловые зазоры в клапанном механизме предназначены для обеспечения герметичной посадки клапана на седло при расширении деталей привода клапанов во время работы двигателя. Величина теплового зазора у впускного и выпускного клапанов устанавливается одинаковой и регулируется в пределах 0,25...0,30 мм. При повторной проверке зазоров после прокрутки коленчатого вала отрегулированного двигателя возможно изменение их до пределов 0,20...0,35 мм из-за погрешности формы и расположения поверхностей деталей распределительного механизма, что является допустимым.

При слишком больших тепловых зазорах уменьшается высота подъема клапанов, вследствие чего ухудшаются наполнение и очистка цилиндров, растут ударные нагрузки и увеличивается износ деталей газораспределительного механизма. При очень малых зазорах в результате теплового расширения деталей газораспределительного механизма не обеспечивается плотное прилегание клапанов к седлам, нарушаются газодинамические процессы В цилиндрах двигателя, ухудшаются мощностные и технико-экономические показатели двигателя. Кроме того, уменьшение зазора в приводе выпускных клапанов может привести к перегреву клапанов и их прогару.

Тепловые зазоры регулировать на холодном двигателе или не ранее, чем через 1 час после его остановки.

При регулировке тепловых зазоров и повторной их проверке коромысла клапанов рекомендуется прижать:

- на головке правого ряда цилиндров коромысла выпускных клапанов к торцу оси, впускных клапанов к упорной шайбе;
- на головке левого ряда цилиндров коромысла выпускных клапанов к упорной шайбе, впускных клапанов к торцу оси.

Выпускные клапаны правого ряда цилиндров расположены ближе к вентилятору, левого ряда цилиндров – к маховику.

Последовательность регулировки:

- 1 Выключить подачу топлива.
- Отвернуть болты крепления крышек головок цилиндров и снять крышки.
- 3 Проверить момент затяжки болтов крепления осей коромысел, который должен быть 120...150 Н⋅м (12...15 кгс⋅м).
- 4 Проворачивая коленчатый вал по часовой стрелке (при виде со стороны вентилятора) спереди ключом за болт крепления шкива или сзади ломиком за маховик через люк в нижней части картера маховика, используя отверстия в маховике (рис. 61), установить момент, когда впускной клапан первого цилиндра полностью поднимется (то есть закроется). Продолжая вращать коленчатый вал, провернуть его еще примерно на 1/3 оборота (≈120°). Это положение коленчатого вала соответствует такту сжатия в первом цилиндре и оба клапана этого цилиндра будут закрыты.

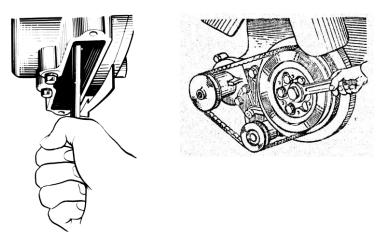


Рис. 61. Проворачивание коленчатого вала

5 Проверить щупом зазор между торцом клапана и носком коромысла у впускного и выпускного клапанов первого цилиндра и, при необходимости, отрегулировать.

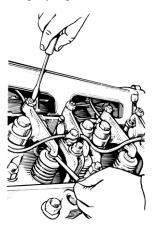


Рис. 62. Регулировка зазора клапанного механизма

- 6 Для регулировки зазоров отвернуть гайку регулировочного винта, вставить в зазор щуп и, вращая винт отверткой (рис. 62), установить зазор 0,25...0,30 мм. Придерживая винт отверткой, затянуть гайку и проверить величину зазора. При правильно отрегулированном зазоре щуп толщиной 0,25 мм должен входить при легком нажиме, толщиной 0,30 мм с усилием.
- 7 Для регулировки зазоров клапанного механизма остальных цилиндров провертывать коленчатый вал в том же направлении до полного закрытия впускного клапана регулируемого цилиндра и дополнительно еще на 1/3 оборота. Зазоры регулировать как указано выше (см. п.6).
 - Регулировку зазоров по цилиндрам рекомендуется проводить в соответствии с порядком их работы 1–4–2–5–3–6. Схема нумерации цилиндров приведена в разделе «Техническая характеристика».
- 8 После окончания регулировки зазоров запустить двигатель и прослушать его работу. Стуков в клапанном механизме не должно быть. В случае наличия характерного стука клапанов остановить двигатель и регулировку зазоров повторить.

9 Поставить и закрепить крышки головок цилиндров, проверить состояние прокладок. В месте прилегания крышек масло не должно подтекать.

ПРОВЕРКА И РЕГУЛИРОВКА УГЛА ОПЕРЕЖЕНИЯ ВПРЫСКИВАНИЯ ТОПЛИВА

Для регулировки угла опережения впрыскивания топлива на картере маховика предусмотрены два люка (см. рис. 63), а на маховике в двух местах нанесены значения углов. Для нижнего указателя 3 эти значения выполнены на маховике в цифровом выражении, а для бокового указателя 4 – в буквенном выражении, при этом, букве "A" соответствует значение в цифровом выражении 20°; букве "Б"-15°; букве "B"-10°; букве "Г"-5°.

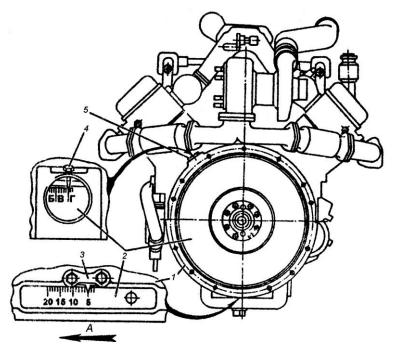


Рис. 63. Совмещение рисок на маховике с указателями картера маховика:

^{1 –} картер маховика; 2 – маховик; 3, 4 – указатели картера маховика;

^{5 –} пробка верхнего люка; А – направление вращения коленчатого вала

Вращать коленчатый вал двигателя по часовой стрелке (если смотреть со стороны вентилятора) до совмещения меток на шкиве коленчатого вала и крышке шестерен распределения или на маховике с указателем, соответствующих установочному углу опережения впрыскивания топлива:

*236HE2, БЕ2: 6°+1° **236HE, БЕ: 13°+1° 236H, Б: 15°+1°

6°+1° 13°±1° 15°+1° * — на двигателях, укомплектованных ТНВД V-образного исполнения (см. прил. 7), установочный угол опережения впрыскивания топлива 6°...7° ** — на двигателях, укомплектованных ТНВД V-образного исполнения (см. прил. 7), установочный угол опережения впрыскивания топлива 10°...11°

При этом клапаны в 1-ом цилиндре должны быть закрыты. Вращать коленчатый вал можно ключом за болт крепления шкива коленчатого вала или ломиком за отверстия в маховике (рис. 61) при снятой крышке люка картера маховика.

В момент совмещения меток должны совместиться метка «А» на торце муфты (рис. 64, 65) с риской «Б» на указателе. Если метки не совместились необходимо произвести регулировку.

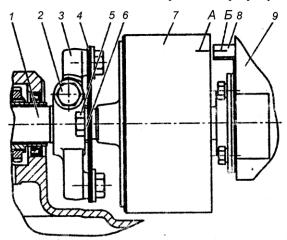


Рис. 64. Муфта привода топливного насоса высокого давления двигателей ЯМЗ-236HE2,БЕ2:

1 — ведущая полумуфта; 2 — болт клеммового соединения; 3 — фланец полумуфты; 4 — пластины привода; 5 — болты крепления пластин привода; 6 — шайбы; 7 — демпферная муфта; 8 — указатель; 9 — топливный насос высокого давления; А — метка на демпферной муфте; Б — метка на указателе

Порядок регулировки угла опережения впрыскивания двигателей ЯМЗ-236НЕ2,БЕ2 (рис. 64):

- ослабить затяжку болта 2 клеммового соединения: фланец 3 ведущая полумуфта 1;
- поворотом демпферной муфты совместить указанные метки;
- не сбивая совмещенного положения меток, затянуть болт клеммового соединения моментом 16...18 кгс-м. При этом отклонение пакета пластин от положения в одной плоскости должно быть в пределах ±1 мм. Замер производить вблизи мест крепления пластин. В случае появления гофр на пластинах 4, их vстранение производится путем поочередного ослабления последующей затяжки моментом 11...12,5 кгс м четырех болтов 5 крепления пластин к фланцу полумуфты и к демпферной муфте;
- проверить правильность установки угла опережения впрыскивания топлива.

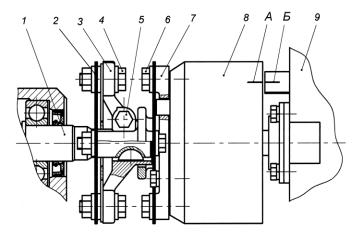


Рис. 65. Муфта привода топливного насоса высокого давления двигателей ЯМЗ-236H,Б,НЕ,БЕ:

1 — вал привода; 2 — пластины привода; 3 — ведущая полумуфта; 4 — болты; 5 — болт клеммового соединения; 6 — болты; 7 — полумуфта ведомая; 8 — муфта опережения впрыскивания топлива; 9 — топливный насос высокого давления; A — метка на муфте; B — метка на указателе

Порядок регулировки угла опережения впрыска двигателей ЯМЗ-236H, Б, НЕ, БЕ (рис. 65):

- проверить плотность посадки полумуфты 3 на валу привода 1 и затяжку клеммового болта 5 (момент затяжки 43,2...58,9 Н·м (4,4...6 кгс·м));
- отвернуть (ослабить) два болта 4 и поворотом муфты опережения за счет овальных отверстий на фланце полумуфты совместить метки «А» и «Б»;
- не сбивая совмещенного положения меток, затянуть болты 4 привода моментом затяжки 43,2...58,9 Н·м (4,4...6 кгс·м). При этом отклонение пакета пластин от положения в одной плоскости должно быть в пределах ±1 мм. Замер производить вблизи мест крепления пластин;
- провернув коленчатый вал, проверить правильность установки угла опережения впрыскивания. Несовпадение рисок должно быть не более одного деления или 1° поворота коленчатого вала.

ВНИМАНИЕ! ВО ИЗБЕЖАНИЕ ПОЛОМКИ ПЛАСТИН ПРИВОДА ТНВД НЕ ДОПУСКАТЬ РАБОТУ ДВИГАТЕЛЯ С ДЕФОРМИРОВАННЫМ ПАКЕТОМ ПЛАСТИН

При ТО-2 проверить наличие масла в муфте опережения впрыскивания топлива двигателей ЯМЗ-236Н,Б,НЕ,БЕ, их комплектациях, и, при необходимости, долить масло. Для контроля установить муфту отверстиями в верхнее положение и вывернуть пробки. При медленном повороте муфты на 70° из одного отверстия должно начать вытекать масло. После доливки масла пробки завернуть.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ СИСТЕМЫ СМАЗКИ

Срок службы двигателя зависит от своевременного и тщательного проведения смазки, а также от сорта и качества применяемых масел и смазок. Во избежание проникновения грязи в механизмы тщательно очищать места смазки и простирать масленки. Места двигателя, требующие периодического добавления или замены смазки, указаны в «Таблице смазки»

ПРОВЕРКА УРОВНЯ МАСЛА

Уровень масла контролировать по меткам указателя уровня масла не раньше, чем через пять минут после остановки двигателя, установив машину на ровной горизонтальной площадке. Для контроля отвернуть указатель с резьбовой части трубки, протереть его стержень чистой ветошью и вставить в трубку, не ввертывая, после чего вторично вынуть указатель (рис. 66) и проверить уровень масла. Уровень масла должен находиться между верхней «В» и нижней «Н» метками. Если уровень масла находится близко к метке «Н», долить до метки «В» свежее масло той же марки. Не доливать масло выше верхней метки. Излишки масла следует слить или откачать из картера.

Рис. 66. Проверка уровня масла в картере двигателя: 1 – указатель уровня масла

ТАБЛИЦА СМАЗКИ

	17tb/ffig/1 Civi/15kfi				
№ п/п	Место смазки	Наименование смазочных материалов	Коли- чество точек смазки	Указание о выполнении работ	Периодич- ность в часах работы
1.	Маслозаливная горловина, масляный картер двигателя	Моторное масло (см. раздел «Эксплуатационные материалы»)	1	Проверить уровень масла, при необходи- мости, долить	Ежедневно
				Заменить масло	См. раздел «Техничес- кое обслу- живание»
2.	Коробка передач	Трансмиссионное масло (см. раздел «Эксплуатационные материалы»)	1	Заменить масло	См. раздел «Техничес- кое обслу- живание»
3.	Муфта опережения впрыскивания	Масло, применяемое для двигателя	1	Проверить уровень масла, при необходимости, долить	1000
				Заменить масло	3000
4.	Подшипники шкива натяжного устройства пневмокомпрессора	Литол-24, ЦИАТИМ-201	1	Заполнить смазкой через пресс-масленку	1000
5.	Подшипники стартера	Масло, применяемое для двигателя	3	Залить в подшипники по 10 капель масла	3500
6.	Привод стартера	Масло, применяемое для двигателя	1	Залить масло в корпус привода	3500
7.	Шлицевая часть вала якоря стартера	Лита, ЦИАТИМ-201	1	Смазать вал якоря	3500
8.	Подшипники вала вилки выключения сцепления	ШРУС-4 ТУ 0254-001- 05766076-98 ШРУС-4М	2	Заполнить смазкой через пресс-масленку	См. раздел «Техничес- кое обслу- живание»
9.	Муфта выключения сцепления	ТУ 38401-58- 128-95	1	Заполнить смазкой через пресс-масленку	См. раздел «Техничес- кое обслу- живание»

СМЕНА МАСЛА

Для удаления из картера вместе с маслом отложений сливать масло из прогретого двигателя, соблюдая меры безопасности. Для слива масла отвернуть сливную пробку на картере и снять крышку маслозаливной горловины предварительно очистив ее от пыли и грязи. После полного слива масла пробку завернуть.

Масло заливать в двигатель через горловину на крышке головки цилиндров. Перед заливкой очистить горловину от пыли и грязи, проверить затяжку сливной пробки масляного картера: момент затяжки 140...160 Н·м (14...16 кгс·м). Заливать масло из маслораздаточных колонок дозировочными пистолетами, а при отсутствии колонок — через воронку с сеткой из чистой заправочной посуды. Закрыть крышку горловины.

ОБСЛУЖИВАНИЕ МАСЛЯНОГО ФИЛЬТРА

1 Отвернуть на 3–4 оборота колпак фильтра и слить масло через канал корпуса в подставленную тару. Для отвертывания колпака можно пользоваться ключом, как показано на рис. 67.

Рис. 67. Отвертывание колпака фильтра

- 2 Отвернуть полностью и снять колпак 5 (рис. 68) фильтра.
- 3 Нажать на замковую крышку 3 и, утопив ее в колпак 5 на 2–3 мм, повернуть на 45°, после чего она выйдет из зацепления с фланцем колпака. Извлечь из колпака замковую крышку и фильтрующий элемент 4.

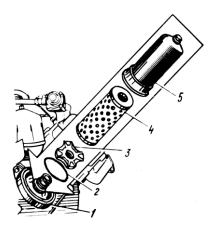


Рис. 68. Масляный фильтр: 1 — корпус; 2 — прокладка; 3 — замковая крышка; 4 — фильтрующий элемент; 5 — колпак

- 4 Промыть внутреннюю полость колпака дизельным топливом. **Не допускается очистка даже чистой ветошью.**
- 5 Установить в колпак новый фильтрующий элемент резиновой прокладкой наружу. В отверстие прокладки установить замковую крышку, обеспечив правильное положение прокладки. Нажав на замковую крышку, утопить ее вместе с элементом в колпак и повернуть на 45°. В пазы крышки войдут выступы фланца колпака, после чего пружина отожмет крышку в рабочее положение.
- 6 Навернуть колпак с элементом на штуцер корпуса 1 и затянуть моментом 20...40 H·м (2...4 кгс·м).
- 7 На работающем двигателе убедиться в отсутствии течи масла через уплотнение колпака. Через четыре замены фильтрующего элемента заменить уплотнительную прокладку 2.

ПРОМЫВКА ФИЛЬТРА ЦЕНТРОБЕЖНОЙ ОЧИСТКИ МАСЛА

- 1 Отвернуть гайку колпака фильтра (рис. 69) и снять колпак.
- 2 Отвернуть гайку крепления ротора; снять ротор с упорной шайбой 9 (рис. 70).

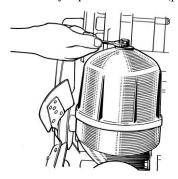
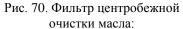
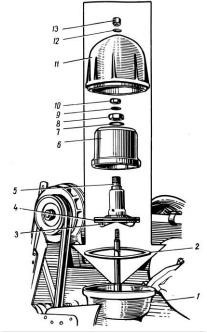




Рис. 69. Отвертывание гайки колпака

1 — корпус; 2 — прокладка колпака; 3 — сопло ротора; 4 — прокладка ротора; 5 — ротор; 6 — колпак; 7 — шайба; 8 — гайка ротора; 9 — упорная шайба; 10 — гайка крепления ротора; 11 — колпак; 12 — шайба; 13 — гайка крепления колпака

- 3 Разобрать ротор, для чего отвернуть гайку 8, снять шайбу 7 и колпак 6 ротора.
- 4 Удалить из колпака 6 и с ротора 5 отложения и промыть их в дизельном топливе.

5 Собрать фильтр в обратной последовательности, проверив состояние прокладок 2 и 4, сопел 3 ротора и шайбы 12. Если необходимо, прокладки заменить, а сопла ротора прочистить.

СНЯТИЕ И ПРОМЫВКА КЛАПАНОВ СИСТЕМЫ СМАЗКИ

При возможном заедании редукционного клапана или дифференциального клапана системы смазки их необходимо снять, отвернув болты крепления. Клапаны промыть в дизельном топливе, не разбирая, и установить на место.

При неисправностях (поломка пружины и др.) заменить клапан в сборе.

СМАЗКА ПОДШИПНИКОВ ШКИВА НАТЯЖНОГО УСТРОЙСТВА ПРИВОДА КОМПРЕССОРА

В процессе эксплуатации полость подшипников шкива натяжного устройства компрессора регулярно наполнять смазкой при ТО-2 через каждые 1000 часов работы двигателя (см. раздел «Техническое обслуживание» и таблицу смазки).

Смазку нагнетать механическим или ручным солидолонагнетателем через пресс-масленку (рис. 71), находящуюся на оси шкива со стороны блока цилиндров, до начала появления смазки через сальник на заднем торце шкива (4–5 ходов при заполнении ручными шприцем).

Один раз в год рекомендуется промывать подшипники натяжного устройства в указанной ниже последовательности:

- 1 Отвернуть гайку крепления оси шкива натяжного устройства и гайку болта-натяжителя.
- Вывернуть болт-натяжитель из оси шкива и снять шкив с осью.
- 3 Вывернуть три болта и снять крышку шкива.
- 4 Удалить из шкива старую смазку (не разбирая его) и промыть в керосине или дизельном топливе.

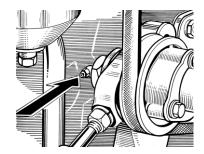


Рис. 71. Масленка шкива натяжного устройства

- 5 Заложить смазку в подшипники и в полость крышки и установить крышку на место.
- 6 Установить шкив с осью на место, надеть ремень, отрегулировать натяжение ремня и затянуть гайку и контргайку крепления оси.
- 7 Заполнить смазкой через пресс-масленку полость подшипников до начала появления смазки через сальники на заднем конце шкива.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ ТОПЛИВНОЙ АППАРАТУРЫ

Своевременное и тщательное обслуживание топливной аппаратуры обеспечивает длительную и надежную работу ее узлов. Для предупреждения коррозионного износа прецизионных деталей топливного насоса и форсунок следует своевременно сливать отстой из топливных фильтров грубой и тонкой очистки. Не допускать попадания воды в топливные баки. Особое внимание необходимо обратить на чистоту деталей и в, первую внутренних полостей топливоподводов и трубок очередь, После отсоединения топливопроводов высокого давления. нагнетательные штуцеры насосов высокого давления, подводящий штуцер форсунки, подводящие и отводящие отверстия топливоподкачивающего насоса, фильтров и концы топливопроводов защитить от попадания пыли и грязи чистыми пробками, заглушками или изоляционной лентой. Все детали перед сборкой тщательно очистите, и промойте в чистом бензине или дизельном Протирка деталей обтирочным топливе. материалом допускается.

При отсоединении топливопровода высокого давления от форсунки придерживать штуцер форсунки гаечным ключом во

избежание его отвертывания и течи топлива. После отсоединения проверьте надежность затяжки штуцера без снятия форсунки с двигателя.

Установку и крепление трубопроводов высокого давления и трубопровода дренажной системы к форсункам производите после установки форсунки и затяжки гайки скобы.

Топливопроводы низкого давления присоединяются пустотельми болтами или накидными гайками через наконечники, закрепленные на концах топливопроводов. Контактные поверхности уплотняются шайбами (см. раздел «Топливопроводы»).

ВНИМАНИЕ! УПЛОТНИТЕЛЬНЫЕ ШАЙБЫ ПОВТОРНО ИСПОЛЬЗОВАТЬ ЗАПРЕЩАЕТСЯ

С целью предотвращения "разноса" двигателя в зимний период эксплуатации категорически запрещается обливать топливный насос высокого давления перед пуском горячей водой. В течение всего периода эксплуатации запрещается мойка топливного насоса водой под напором.

При остановке двигателя в зимний период эксплуатации скобу кулисы регулятора оставьте в положении выключенной подачи.

ОБСЛУЖИВАНИЕ ФОРСУНОК

При обслуживании каждой форсунке провести проверку и регулировку в следующем порядке:

1 Каждую форсунку отрегулируйте на давление начала впрыскивания:

Модель двигателя	Модель форсунки	Давление
A H	4 °F °J ····	начала впрыска
ямз-236НЕ2,БЕ2	267.1112010-01	26,5 ^{+0,8} ΜΠα
с рядным ТНВД		$(270^{+8} \text{ krc/cm}^2)$
ямз-236не,бе	204.1112010-50.01	26,5 ^{+1,2} MΠa
с V - образным ТНВД	204.1112010-30.01	$(270^{+12} \text{ kgc/cm}^2)$
	267 1112010 11	26,5 ^{+0,8} МПа
ЯМЗ-236НЕ2,БЕ2	267.1112010-11	$(270^{+8} \text{ kgc/cm}^2)$
с V - образным ТНВД	204 1112010 50	26,5 ^{+1,2} MΠa
	204.1112010-50	$(270^{+12} \text{ kgc/cm}^2)$
(I) (2) (11 F 11F FF	261 1112010 12(12)	20,6 ^{+0,8} МПа
ЯМЗ-236Н,Б,НЕ,БЕ	261.1112010-13(12)	$(210^{+8} \text{ kgc/cm}^2)$

Примечание: После длительной работы двигателя допускается снижение давления начала впрыскивания форсунок на 8%.

Регулировку рекомендуется производить на специальном стенде типа КИ-3333, удовлетворяющем ГОСТ 10579-88.

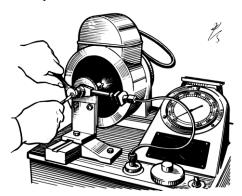


Рис. 72. Регулировка давления начала впрыскивания

Давление начала впрыскивания форсунок моделей 267-01, 267-11, 261-13(12) регулируется винтом при снятом колпаке форсунки и отвернутой контргайке. При ввертывании винта давление повышается, при вывертывании - понижается.

Давление начала впрыскивания форсунки моделей 204-50 и 204-50.01 регулируется с помощью регулировочных шайб. При увеличении их общей толщины давление повышается, при уменьшении - понижается.

- 2 Проверить герметичность распылителя по запирающему конусу иглы и отсутствие течей в местах уплотнений линии высокого давления. Для этого создать в форсунке давление топлива на 1...1,5 МПа (10...15 кгс/см²) ниже давления начала впрыскивания. При этом в течение 15 секунд не должно быть подтекания топлива из распыливающих отверстий; допускается увлажнение носика распылителя без отрыва топлива в виде капли. Герметичность в местах уплотнений линии высокого давления проверить при выдержке под давлением в течение 2 мин; на верхнем торце гайки распылителя (при установке форсунки под углом 15° к горизонтальной поверхности) не должно образовываться отрывающейся капли топлива.
- 3 Подвижность иглы проверить прокачкой топлива через форсунку, отрегулированную на заданное давление начала впрыскивания на опрессовочном стенде, при частоте впрыскивания 30-40 в минуту. Допускается подвижность иглы проверять одновременно с проверкой качества распыливания по п.4

4 Качество распыливания проверять на опрессовочном стенде прокачкой топлива через форсунку, отрегулированную на заданное давление начала впрыскивания при частоте 60-80 впрыскиваний в минуту.

Качество распыливания считается удовлетворительным, если топливо впрыскивается в атмосферу в туманообразном состоянии и равномерно распределяется как по всем струям, так и по поперечному сечению каждой струи. Начало и конец впрыскивания при этом должны быть четкими. После окончания впрыскивания допускается увлажнение носика распылителя без образования капли.

Впрыскивание топлива у новой форсунки сопровождается характерным резким звуком. Отсутствие резкого звука у бывших в эксплуатации форсунок не означает снижения качества их работы.

- 5 Герметичность уплотнения, соединения и наружных поверхностей полости низкого давления проверять опрессовкой воздухом давлением $0,45\pm0,05$ МПа $(4,5\pm0,5$ кгс/см²). Пропуск воздуха в течении 10 секунд не допускается при подводе воздуха со стороны носика распылителя.
- 6 Герметичность соединений «распылитель-гайка распылителя» проверять опрессовкой воздухом давлением $0,5\pm0,1$ МПа $(5\pm1~{\rm krc/cm}^2)$ в течение 10 секунд при подводе воздуха со стороны носика распылителя. Пропуск пузырьков воздуха по резьбе гайки распылителя при погружении ее в дизельное топливо не допускается.

При закоксовке или засорении одного или нескольких распыливающих отверстий распылителя форсунку разобрать, детали форсунки прочистить и тщательно промыть в профильтрованном дизельном топливе.

При не герметичности по запирающему конусу распылитель в сборе подлежит замене. Замена деталей в распылителе не допускается.

Разборку форсунки выполнять в следующей последовательности:

Форсунки моделей 267-01, 267-11, 204-50, 204-50.01, 261-13(12):

- 1 отвернуть колпак форсунки;
- 2 отвернуть контргайку и вывернуть до упора регулировочный винт;

- 3 отвернуть гайку пружины на полтора два оборота;
- 4 отвернуть гайку распылителя;
- 5 снять распылитель, предохранив иглу распылителя от выпадания.

Нагар с корпуса распылителя счищать металлической щеткой или шлифовальной шкуркой с зернистостью не грубее "М40". Распыливающие отверстия прочистить стальной проволокой диаметром 0,3 мм. Применять для чистки внутренних полостей корпуса распылителя и поверхностей иглы твердые материалы и шлифовальную шкурку не допускается.

Рис. 73. Чистка распыливающих отверстий: 1-распылитель; 2-стальная проволока; 3-зажимной патрон

Перед сборкой распылитель и иглу тщательно промыть в профильтрованном дизельном топливе. Игла должна легко перемещаться: выдвинутая из корпуса распылителя на одну треть длины направляющей, при наклоне распылителя на угол 45° от вертикали, игла должна плавно, без задержек полностью опускаться под действием собственного веса.

Сборку форсунки производить в последовательности обратной разборке. При затяжке гайки разверните распылитель против направления навинчивания гайки до упора в фиксирующие штифты и, придерживая его в этом положении, наверните гайку рукой, после чего гайку окончательно затяните.

Момент затяжки гайки распылителя 60...70~H·м (6...7~кгс·м), штуцера форсунки 80...100~H·м (8...10~кгс·м).

После сборки отрегулировать форсунку на давление начала впрыскивания и проверить качество распыливания топлива и четкость работы распылителя.

ВНИМАНИЕ! УСТАНОВКА ФОРСУНОК ИЛИ РАСПЫЛИТЕЛЕЙ, НЕСООТВЕТСТВУЮЩИХ ДАННОМУ ДВИГАТЕЛЮ, КАТЕГОРИЧЕСКИ ЗАПРЕЩАЕТСЯ. ШАЙБЫ ПОД ФОРСУНКИ ПОДЛЕЖАТ ЗАМЕНЕ, ПОВТОРНОЕ ИХ ИСПОЛЬЗОВАНИЕ ЗАПРЕЩАЕТСЯ

ОБСЛУЖИВАНИЕ ТОПЛИВНОГО НАСОСА ВЫСОКОГО ДАВЛЕНИЯ

ВНИМАНИЕ! ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ, РЕГУЛИРОВКА V-ОБРАЗНОГО ТОПЛИВНОГО НАСОСА ВЫСОКОГО ДАВЛЕНИЯ В СООТВЕТСТВИИ С УКАЗАНИЯМИ ПРИЛОЖЕНИЯ 7.

Перед началом регулировки масляную полость насоса и регулятора промыть чистым дизельным топливом и заполнить свежим маслом, применяемым для двигателя, до уровня сливного отверстия. На время испытаний штуцер слива масла заглушить.

Проверка и регулировка топливного насоса выполняется квалифицированным персоналом в условиях мастерской на специальных регулировочных стендах. Для регулировки рекомендуются стенды, изготовляемые предприятием "Моторпал" (Чехия), фирмой "Хансман" (Австрия) или других фирм с мощностью привода не менее 11 кВт, а также стенд отечественного изготовления "КИ-15711" с мощностью привода не менее 11 кВт.

Оборудование и приборы стендов должны удовлетворять требованиям ГОСТ 10758.

Должны применяться:

- весы среднего класса точности по ГОСТ 29329;
- приспособление для контроля подъема толкателя Т9590-27;
- приспособление для контроля начала действия регулятора T9597-111.

Стенд должен быть оборудован дополнительной системой подвода фильтрованного масла к топливному насосу с регулируемым давлением до 0,4 МПа (4 κ гс/см²) и системой подвода сжатого воздуха с устройством для плавного регулирования давления от 0 до 0,15 МПа (от 0 до 1,5 κ гс/см²).

Испытания насосов должны проводиться на профильтрованном дизельном топливе марки Л по ГОСТ 305-82 или калибровочной (технологической) жидкости, состоящей из его смеси с индустриальным маслом по ГОСТ 20799-88, авиационным маслом по ГОСТ 21743-76 или осветительным керосином по ТУ 38.401-58-10-90, имеющих вязкость 5-6 мм 2 /с (сСт) при температуре (20 \pm 0,5)°С.

Допускается применение смеси рабочих жидкостей, состоящих из 40% РЖ-3 ТУ 38.101.964 и 60% РЖ-8 ТУ 38.101.883, имеющих вязкость 5-6 мм 2 /с (сСт) при температуре $20\pm5^{\circ}$ С.

Температура топлива, измеряемая в выпускном соединении стенда с топливопроводом к испытываемому насосу при контроле величины и неравномерности цикловых подач должна быть $(32\pm2)^{\circ}$ C.

Проверку и регулировку топливного насоса следует проводить со стендовым комплектом форсунок, имеющих эффективное проходное сечение $\mu f = 0.244 \text{ km}^2$.

Допускается проверку и регулировку топливного насоса выполнять с рабочим комплектом форсунок. Каждая форсунка должна быть закреплена за соответствующей секцией топливного насоса и в дальнейшем устанавливаться в том цилиндре двигателя, который соединен с данной секцией.

Для стендового комплекта топливопроводов высокого давления следует применять трубки длиной 415 ± 3 мм, разница в пропускной способности топливопроводов, составляющих стендовый комплект, не должна превышать 0.5 мм 3 /цикл.

Пропускную способность топливопровода определять на одной секции высокого давления, с одной форсункой и на одном пеногасителе стенла.

При проверке топливного насоса контролируется:

- а) начало подачи топлива секциями насоса;
- б) величина и неравномерность подачи топлива.

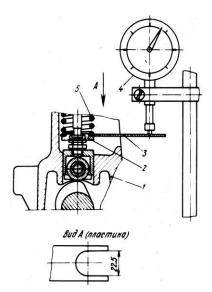
РЕГУЛИРОВКА ТОПЛИВНОГО НАСОСА ВЫСОКОГО ДАВЛЕНИЯ МОД. 133-20, 133-30

Перед установкой насоса на стенд проверить отсутствие осевого люфта кулачкового вала. При наличии люфта обеспечить натяг 0.01-0.07 мм, предварительно отрегулировав люфт кулачкового вала 0.03-0.09 мм установкой регулировочных прокладок, контролируемый усилием 90-100 H (9-10 кгс), а затем убрать две прокладки толщиной по 0.05 мм.

Перед проверкой и регулировкой нужно убедиться в герметичности системы низкого давления и масляной полости топливного насоса высокого давления.

НАЧАЛО ПОДАЧИ ТОПЛИВА СЕКЦИЯМИ

Начало подачи топлива секциями насоса определяется величиной подъема толкателя, углом поворота кулачкового вала насоса при вращении его по часовой стрелке, если смотреть со стороны привода, при положении рейки, соответствующем номинальной подаче, т.е. положении, при котором рейка выступает от торца насоса на величину 11 ± 1 мм.


Начало подачи топлива первой секцией насоса должно соответствовать подъему толкателя:

6,2±0,06 мм для ТНВД 133-20;

6,0±0,06 мм для ТНВД 133-30.

Величину подъема толкателя измерять индикатором (рис. 74).

Рис. 74. Прибор для проверки величины подъема толкателя: 1 — корпус топливного насоса высокого давления; 2 — нижняя тарелка пружины толкателя; 3 — пластина; 4 — индикатор; 5 — пружина толкателя

В момент начала подачи топлива первой секцией риски на указателе начала нагнетания топлива и на гасителе крутильных колебаний должны совпадать. Несовпадение рисок не должно превышать 0.5° .

Секции насоса должны начинать подачу в следующем порядке (в градусах поворота кулачкового вала);

 Секция № 1 - 0°
 Секция № 5 - 165°

 Секция № 2 - 45°
 Секция № 4 - 240°

 Секция № 3 - 120°
 Секция № 6 - 285°

Отклонение углов кулачкового вала, соответствующих началу нагнетания топлива секциями насоса относительно геометрического начала нагнетания топлива первой секцией насоса, должно быть не более 30'.

Регулировка начала подачи топлива осуществляется прокладками, устанавливаемыми под фланцы корпуса секции, причем их количество и толщина должны быть одинаковыми с обеих сторон, а наиболее толстая прокладка должна быть сверху.

При увеличении толщины прокладок подача топлива начинается позже, при уменьшении – раньше.

Во избежание поломки насоса минимальная толщина прокладок не должна быть меньше 0,6 мм.

ПРОВЕРКА И РЕГУЛИРОВКА ВЕЛИЧИНЫ И РАВНОМЕРНОСТИ ПОДАЧИ ТОПЛИВА

Проверку и регулировку величины и равномерности подачи топлива производить в следующем порядке:

- 1 Проверить давление начала открытия нагнетательных клапанов, которое должно быть 0,02...0,1 МПа (0,2...1 кгс/см²). Контроль давления начала открытия нагнетательных клапанов производить по моменту начала движения топлива из штуцеров секций насоса при плавном повышении давления на входе в топливный насос и положении рейки, соответствующем выключенной подаче, и заглушенном отверстии перепускного клапана.
- 2 Проверить давление топлива в магистрали на входе в топливный насос. Давление должно быть 0,175±0,025 МПа $\kappa \Gamma c/cm^2$) номинальной частоте $(1,75\pm0,25)$ при кулачкового вала и упоре рычага управления в болт ограничения скоростного режима. При необходимости максимального перепускного пробку шайбами вывернуть клапана И отрегулировать давление открытия.

3 Проверить наличие запаса хода рейки. Под запасом хода рейки понимать свободный ход рейки (люфт) в сторону выключения подачи при 450 - 600 мин⁻¹ и при упоре рычага управления регулятором в болт ограничения минимальной частоты вращения. В случае отсутствия запаса хода рейки необходимо вывернуть До упора винт подрегулировки мощности и далее вин- том кулисы отрегулировать запас хода рейки в пределах 1-1,3 мм и законтрить его.

ВНИМАНИЕ! ВЫСТУПАНИЕ ВИНТА КУЛИСЫ ЗА ВНЕШНИЙ ТОРЕЦ КРЫШКИ РЕГУЛЯТОРА НЕДОПУСТИМО

- 4 Проверить начало выключения пусковой подачи топлива при 230 250 мин⁻¹ при упоре рычага управления в болт ограничения минимального скоростного режима по началу движения рейки. Если требуется увеличить обороты, снять зацеп пружины с рычага рейки и ввернуть его в пружину. Для уменьшения оборотов зацеп выворачивается. После этого поставить зацеп на рычаг рейки.
- 5 Проверить величину средней пусковой подачи топлива, которая должна быть в пределах $210\text{-}240~\text{мм}^3$ /цикл при $80\pm10~\text{мин}^{-1}$ кулачкового вала насоса. Регулируется болтом регулировки пусковой подачи 10~(рис. 26). При выворачивании болта из рейки пусковая подача уменьшается, при вворачивании -увеличивается.
- 6 При упоре рычага управления в болт ограничения максимального скоростного режима проверить частоту вращения кулачкового вала насоса, соответствующую началу выброса рейки, определяемую по моменту начала движения рейки в сторону выключения подачи. Начало выброса рейки должно происходить при частоте вращения 1060-1080 мин⁻¹ для двигателя ЯМЗ-236НЕ2 и 1010-1030 мин⁻¹ для двигателя ЯМЗ-236БЕ2. Подрегулировку производить болтом ограничения максимального скоростного режима.
- 7 Проверить частоту вращения, соответствующую концу выброса рейки, определяемую по моменту прекращения подачи топлива форсунками. Конец выключения должен происходить при частоте вращения на 50-120 мин⁻¹ больше частоты вращения начала выброса рейки.

Подрегулировку производить винтом двухплечего рычага. При ввертывании частота вращения конца выброса рейки

уменьшается, при вывертывании — увеличивается. При этом изменяется и начало выключения, поэтому необходима его последующая проверка и подрегулировка по п. 6.

8 Проверить. и при необходимости отрегулировать с комплектом форсунок при упоре рычага управления регулятором в болт ограничения максимального скоростного режима среднюю цикловую подачу топлива, приращение средней цикловой подачи и неравномерность подачи топлива по секциям, которое должны быть:

Модель двигателя	Мо- дель топл ивно го насо са	Частота враще- ния кулачков ого вала, мин ⁻¹	Средняя цикловая подача топлива, далее q, мм ³ /цикл	Приращение фактической средней цикловой подачи по отношению к фактической средней цикловой подаче на номинальном режиме, мм ³ /цикл	Неравно мерность подачи топлива по секциям насоса; % не более
		1030±10	140 -146	_	5
ЯМЗ-	133-	850±10	_	0 – 6	-
236HE2	20	650±10	1	минус (0 – 6)	8
		500±10	1	144, не более	-
		980±10	152 -158	_	5
ЯМЗ-	133-	850±10	-	3 – 9	_
236БЕ2	30	650±10	_	7 – 13	8
		500±10	_	21, не более	-

Величина средней цикловой подачи рассчитывается как сумма подачи всех секций

Неравномерность подачи по секциям рассчитывается по формуле:

$$\delta = rac{2 \cdot \left(q_{_{
m II}}^{\, max} - q_{_{
m II}}^{\, min}
ight)}{q_{_{
m II}}^{\, max} + q_{_{
m II}}^{\, min}} \cdot 100 \, \%$$
 , где

где:

 $q_{_{I\!I}}^{\ \ max}$ — максимальная цикловая подача топлива по секциям, мм $^3/$ цикл;

 $q_{_{II}}^{\ min}$ — минимальная цикловая подача топлива по секциям, мм 3 /цикл.

- 8.1 Величину средней цикловой подачи на номинальном режиме подрегулировать винтом номинальной подачи: при вращении винта по часовой стрелке подача уменьшается, против часовой стрелки увеличивается. Регулировку равномерности цикловой подачи топлива каждой секцией насоса регулировать поворотом корпуса секции относительно корпуса насоса, предварительно ослабив гайки крепления фланца. При повороте секций по часовой стрелке цикловая подача увеличивается, против часовой стрелки уменьшается. После регулировки надежно затянуть гайки крепления фланца.
- 8.2 Приращение средней цикловой подачи при частоте вращения $850\,$ мин $^{-1}$ подрегулировать корпусом положительного корректора.
- 8.3 Приращение средней цикловой подачи при частоте вращения 650 мин⁻¹, соответствующей максимальному крутящему моменту, регулируется гайкой положительного корректора. При завертывании гайки приращение подачи снижается, при выворачивании увеличивается. После регулировки гайку надежно законтрить.
- 8.4 Приращение средней цикловой подачи при частоте вращения 500 мин⁻¹ подрегулировать:

для ТНВД 133-20 -гайкой отрицательного корректора; для ТНВД 133-30 - шайбами между упором и втулкой отрицательного корректора. Проверку топливных насосов по пунктам 1-8 производить при отсутствии давления воздуха и масла в корректоре по наддуву.

- 9 Проверить работу корректора подачи топлива по наддуву, для этого:
- 9.1 Промыть в чистом бензине сетчатый фильтр штуцера 15 (рис. 28) и тщательно продуть его сжатым воздухом,
- 9.2 Прочистить калибровочное отверстие в корпусе корректора мягкой проволокой диаметром 0,5-0,7 мм.
- 9.3 Проверить герметичность полости мембраны. Для этого к отверстию на крышке корпуса мембраны подвести воздух под давлением 0,06 \pm 0,01 МПа (0,6 \pm 0,1 кгс/см²). При полностью перекрытом подводящем воздухопроводе падение давления в полости мембраны за время 2 мин не должно превышать 0,01 МПа (0,1 кгс/см²).

9.4 Установить частоту вращения кулачкового вала насоса $650\pm10~{\rm мин}^{-1}$, подвести к корректору масло под давлением 0,25-0,3 МПа (2,5-3 кгс/см²), рычаг управления должен быть на упоре в болт ограничения максимального скоростного режима.

Для введения в работу корректора по наддуву одноразово выключить подачу топлива скобой кулисы, после чего перевести скобу в положение «подача включена».

9.5 Замерить величины цикловых подач топлива при различных давлениях воздуха в полости мембраны, которые лолжны быть:

Модель топливного	Средняя цикловая подача топлива секциями насоса, мм ³ /цикл при давлении воздуха в полости диафрагмы					
насоса		корректора, МПа (кгс/см²)				
	0,035 - 0,09	0,05-0,11	0	0 - 0.01	0.02 ± 0.001	
	(0,35-0,9)	(0,5-1,1)	U	(0-0,1)	(0.2 ± 0.01)	
1	2	3	4	5	6	
133-20	q - (0 - 6)			133 ± 3		
133-30	_	q + (7–13)	142-148 (далее q ₁)		$q_1 + (3 - 9)$	

Если замеренные величины отличаются от указанных, необходимо произвести подрегулировку корректора.

Регулировка величины цикловой подачи топлива при избыточном давлении на мембране, равном 0 МПа, выполняется регулировочным болтом 21 рычага 19 (рис. 28). При ввертывании болта подача увеличивается, при вывертывании — уменьшается. После регулировки болт законтрить гайкой.

Величину цикловых подач топлива при промежуточных давлениях воздуха на мембране регулировать корпусом пружины 10. При вворачивании корпуса пружины величина топливоподачи уменьшается, при выворачивании — увеличивается. После регулировки корпус пружины законтрить гайкой.

Перед заменой изношенной мембраны (при необходимости) нужно замерить у мембраны со штоком в сборе величину выступания штока от нижнего торца гайки. После этого заменить мембрану и собрать ее со штоком с той же величиной выступания штока с точностью 0,1 мм, при этом западание торца золотника 12 относительно торца поршня 13 должно быть 0,2-0,9 мм при отсутствии зазора между торцом поршня и корпусом корректора.

При установке корректора по наддуву после демонтажа (если в этом была необходимость) на регулятор отвести скобой кулисы рейку насоса в крайнее выключенное положение и установить корректор по наддуву в корпус регулятора, после чего отпустить скобу.

Проверить регулировку корректора по наддуву на наличие выключения подачи топлива регулятором.

10 Проверить выключение цикловой подачи скобой кулисы при повороте на 40-45° от исходного положения. Подача топлива из форсунок всех секций, топливного насоса при любой частоте вращения и любом положении рычага управления регулятором должна полностью выключиться.

Установить крышки на топливный насос и регулятор и запломбировать их. Установить пломбу на болт регулировки максимальных оборотов.

РЕГУЛИРОВКА ТОПЛИВНОГО НАСОСА ВЫСОКОГО ДАВЛЕНИЯ МОД. 604.5, 604.5-10, 607.5, 607.5-10

Перед установкой насоса на стенд проверьте осевой люфт кулачкового вала. Если люфт превышает 0,1 мм — отрегулируйте его регулировочными прокладками в пределах 0,01...0,07 мм.

Перед проверкой и регулировкой нужно убедиться в герметичности системы низкого давления и масляной полости топливного насоса высокого давления.

НАЧАЛО ПОДАЧИ ТОПЛИВА СЕКЦИЯМИ

Начало подачи топлива секциями насоса определяется углом поворота кулачкового вала насоса при вращении его по часовой стрелке, если смотреть со стороны привода, и положении рейки, соответствующим номинальной подачи, т. е. положении, при котором рейка выступает от торца насоса на величину $19\pm1~\mathrm{MM}$.

Начало подачи топлива первой секцией насоса должно соответствовать подъему толкателя $4,5\pm0,05$ мм, измеряемому индикатором (рис. 74).

В момент начала подачи топлива первой секцией риски на корпусе насоса или указателе начала подачи топлива и на маховике должны совпадать. Несовпадение рисок не должно превышать 0,5°. (Риски на корпусе насоса или указателе начала подачи также служат для установки угла опережения впрыскивания топлива на двигателе).

Секции насоса должны начинать подачу в следующем порядке (в градусах поворота кулачкового вала):

Секция №1	-	0°	-"-	№5	-	165°
Секция №4	-	45°	-"-	№ 3	-	240°
Секция №2	-	120°	_"_	№6	_	285°

Отклонение углов кулачкового вала, соответствующих началу нагнетания топлива секциями насоса относительно геометрического начала нагнетания топлива первой секцией насоса, должно быть не более 30'.

Регулировку начала подачи топлива производить изменением положения болта толкателя 3 (рис. 29). Один полный оборот болта толкателя соответствует изменению высоты толкателя на 0,75 мм.

Для установки более раннего начала нагнетания топлива необходимо вывернуть регулировочный болт толкателя, для установки более позднего — ввернуть. Один полный оборот регулировочного болта толкателя соответствует примерно 2,5° поворота кулачкового вала.

После регулировки тщательно законтрить контргайками регулировочные болты толкателей.

ПРОВЕРКА И РЕГУЛИРОВКА ВЕЛИЧИНЫ И РАВНОМЕРНОСТИ ПОДАЧИ ТОПЛИВА

Проверку и регулировку величины и равномерности подачи топлива производить в следующем порядке:

1 Проверить герметичность нагнетательных клапанов, для чего:

- установить герметичную заглушку на перепускной клапан, подвести топливо через подводящий канал топливного насоса под давлением 0,1...0,12 МПа $(1,0...1,2\kappa \text{гс/cm}^2)$;
- при положении рейки, соответствующем выключенной подаче, в течение двух минут течь топлива из штуцеров не допускается. В случае течи нагнетательный клапан заменить.
- 2 Проверить давление открытия нагнетательных клапанов, которое должно быть 0,85...1,15 МПа (8,5..11,5кгс/см²). Контроль давления начала открытия нагнетательных клапанов производить по моменту начала движения топлива из штуцеров секций насоса при плавном повышении давления на входе в положении рейки, топливный насос И соответствующем выключенной подаче, и заглушенном отверстии перепускного клапана. Если необходимо, отрегулировать давление открытия клапана изменением количества регулировочных прокладок. Прокладка толщиной 0,1 мм изменяет давление открытия клапана на 0,1 МПа. Прокладку толщиной 0,4 мм установить между пружиной и регулировочными прокладками.
- 3 Проверить давление топлива в магистрали на входе в топливный насос. Давление должно быть 0,075±0,025 МПа (0,75±0,25кгс/см²) при частоте вращения кулачкового вала 1030 мин⁻¹ для топливных насосов 604.5, 604.5-10 и 980 мин⁻¹ для топливных насосов 607.5, 607.5-10 при упоре рычага управления в болт ограничения максимального скоростного режима. При необходимости вывернуть пробку перепускного клапана и шайбами отрегулировать давление открытия.
- 4 Проверить наличие запаса хода рейки. Под запасом хода рейки понимают свободный ход рейки (люфт) в сторону выключения подачи при 450-500 мин⁻¹ и при упоре рычага управления регулятором в болт ограничения минимальной частоты вращения.

В случае отсутствия запаса хода рейки необходимо вывернуть до упора винт подрегулировки мощности и далее винтом кулисы отрегулировать запас хода рейки в пределах 1-1,5 мм и законтрить его.

ВНИМАНИЕ! ВЫСТУПАНИЕ ВИНТА КУЛИСЫ ЗА ВНЕШНИЙ ТОРЕЦ КРЫШКИ РЕГУЛЯТОРА НЕДОПУСТИМО.

5 Проверить начало выключения пусковой подачи топлива при 230–250 мин⁻¹ при упоре рычага управления в болт ограничения минимального скоростного режима по началу движения рейки. Если требуется увеличить обороты, снять зацеп пружины с рычага рейки и ввернуть его в пружину.

Для уменьшения оборотов зацеп выворачивается. После этого поставить зацеп на рычаг рейки.

- 6 Проверить величину средней пусковой подачи топлива, которая должна быть не менее 230 мм³/цикл при 80±10 мин⁻¹ кулачкового вала насоса. Регулируется винтом кулисы только в сторону увеличения подачи топлива. После регулировки винт кулисы зачеканить. Проверить выключение подачи.
- 7 При упоре рычага управления регулятором в болт ограничения максимального скоростного режима проверить частоту вращения кулачкового вала насоса соответствующую началу выброса рейки, определяемую по моменту начала движения рейки в сторону выключения подачи. Начало выброса рейки должно происходить при частоте вращения (1065-1085) мин⁻¹ для двигателей ЯМЗ-236H, ЯМЗ-236HE и (1025-1045) мин⁻¹ для двигателей ЯМЗ-236Б, ЯМЗ-236БЕ.

Подрегулировку производить болтом ограничения максимального скоростного режима.

8 Проверить частоту вращения, соответствующую концу выброса рейки, определяемую по моменту прекращения подачи топлива форсунками, при упоре рычага управления регулятором в болт ограничения максимального скоростного режима. Конец выключения подачи должен происходить при частоте вращения на 50-100 мин⁻¹ больше частоты начала выбора рейки.

Подрегулировку производить винтом двуплечего рычага. При ввертывании винта частота вращения конца выброса уменьшается, при вывертывании — увеличивается. При этом изменяется и начало выключения, поэтому необходима его последующая проверка и подрегулировка по п.7.

9 Проверить и по необходимости отрегулировать с комплектом форсунок при упоре рычага управления регулятором в болт ограничения максимального скоростного режима среднюю цикловую подачу топлива, приращение средней цикловой подачи и неравномерность подачи топлива по секциям, которые должны быть:

Модель двигате ля	Модель топливно го насоса	Частота вращения кулачково го вала, мин ⁻¹	Средняя цикловая подача топлива, мм ³ /цикл	Приращение фактической средней цикловой подачи по отношению к фактической средней цикловой подаче на номинальном режиме, мм ³ /цикл	Неравном ерность подачи топлива по секциям насоса; % не более
-ЕМЯ	604.5	1030±10	123-127	_	5
236H	236H 004.5	650±10	_	6-10	8
-ЕМЯ	604.5-10	1030±10	123-127	-	5
236HE	36HE 004.5-10	650±10	_	6-10	8
ямз-		980±10	139-143	ı	5
236Б	607.5	850±10	ı	6-10	_
230D		650±10	-	22-26	8
m m		980±10	139-143	-	5
ЯМ3- 236БЕ	607.5-10	850±10	-	6-10	_
230DE		650±10	_	22-26	8

Величина средней цикловой подачи рассчитывается как сумма подачи всех секций, деленная на количество секций.

Неравномерность подачи топлива по секциям рассчитывается по формуле:

$$\delta = rac{2 \cdot \left(q_{_{
m II}}^{\,max} - q_{_{
m II}}^{\,min}
ight)}{q_{_{
m II}}^{\,max} + q_{_{
m II}}^{\,min}} \cdot 100\,\%$$
 , где:

 $q_{\rm u}^{\ \ min}$ — минимальная цикловая подача топлива по секциям, мм 3 /пикл.

9.1 Величину средней цикловой подачи топлива на номинальном режиме подрегулировать винтом номинальной подачи: при вращении винта по часовой стрелке подача уменьшается; против часовой стрелки – увеличивается.

Цикловую подачу топлива каждой секцией насоса регулировать разворотом поворотной втулки плунжера при ослабленном стяжном винте зубчатого венца. Для увеличения подачи топлива какой-либо секцией топливного насоса необходимо поворотную втулку плунжера повернуть вправо, для уменьшения подачи топлива — влево. После регулировки винты зубчатых венцов должны быть надежно затянуты.

- 9.2 Приращение средней цикловой подачи при частоте вращения $850\,$ мин $^{-1}$ подрегулировать корпусом пружины корректора.
- 9.3 Приращение средней цикловой подачи при частоте вращения 650 мин⁻¹, соответствующей максимальному крутящему моменту, регулируется гайкой корректора. При заворачивании гайки приращение подачи снижается, при выворачивании увеличивается. После регулировки гайку законтрить.
- 10 Проверить работу корректора подачи топлива по наддуву. Для этого:
- 10.1 Промыть в чистом бензине сетчатый фильтр штуцера 15 (рис. 28) и тщательно продуть его сжатым воздухом.
- 10.2 Прочистить калиброванное отверстие в корпусе корректора мягкой проволокой диаметром (0,5–0,7) мм.
- 10.3 Проверить герметичность полости мембраны. Для этого к отверстию на крышке 6 корпуса мембраны подвести воздух под давлением 0.06 ± 0.01 МПа $(0.6\pm0.1$ кгс/см²). При полностью перекрытом подводящем воздуховоде падение давления в полости мембраны за время 2 мин не должно превышать 0.01 МПа (0.1 кгс/см²).
- 10.4 Установить частоту вращения кулачкового вала насоса 650 ± 10 мин $^{-1}$, подвести к корректору масло под давлением 0.25-0.3 МПа (2.5-3 кгс/см $^2)$, рычаг управления должен быть на упоре в болт ограничения максимального скоростного режима.

Для введения в работу корректора по наддуву одноразово выключить подачу топлива рычагом останова, после чего перевести рычаг в положение "подача включена".

10.5 Замерить величины цикловых подач топлива при различных давлениях воздуха в полости мембраны, которые должны быть:

Обозначение модели	Средняя цикловая подача топлива секциями насоса, мм 3 /цикл при давлении воздуха в полости диафрагмы корректора, МПа (кгс/см 2).				
топливного насоса	$ \begin{array}{c cccc} 0.055 \pm 0.02 & 0.055 \pm 0.02 & 0.035 \pm 0.001 \\ (0.55 \pm 0.2) & (0.55 \pm 0.2) & (0.35 \pm 0.01) \\ \end{array} \leq 0.02 \ (0.25) \ (0.2$				
607.5, 607.5-10	168-176	_	126-132	115-121	
604.5, 604.5-10	ı	136-144	120-132	113-121	

Если замеренные величины отличаются от указанных, необходимо произвести подрегулировку корректора.

Регулировка величины цикловой подачи топлива при избыточном давлении на мембране 0 МПа, выполняется регулировочным болтом 21 рычага 19 (рис. 28). При ввертывании болта подача увеличивается, при вывертывании — уменьшается. После регулировки болт законтрить гайкой.

Величину цикловых подач топлива при промежуточных давлениях воздуха на мембране регулировать корпусом пружины 10. При вворачивании корпуса пружины величина топливоподачи уменьшается, при выворачивании — увеличивается. После регулировки корпус пружины законтрить гайкой.

Перед заменой изношенной мембраны (при необходимости) нужно замерить у мембраны со штоком в сборе величину выступания штока от нижнего торца гайки. После этого заменить мембрану и собрать её со штоком с той же величиной выступания штока с точностью 0,1 мм.

При установке корректора по наддуву после демонтажа (если в этом была необходимость) на регулятор отвести рычагом останова рейку насоса в крайнее выключенное положение и установить корректор по наддуву в корпус регулятора, после чего отпустить рычаг останова.

Проверить регулировку корректора по наддуву и наличие выключения подачи топлива регулятором.

11 Проверить выключение цикловой подачи рычагом останова. При повороте на 40-45° от исходного положения подача топлива из форсунок всех секций топливного насоса при любой частоте вращения в любом положении рычага управления регулятором должна полностью выключаться.

УСТАНОВКА ТОПЛИВНОГО НАСОСА ВЫСОКОГО ДАВЛЕНИЯ НА ДВИГАТЕЛЬ

- 1 Установить ведомую полумуфту (рис. 64, 65) на муфту опережения (демпферную муфту) и закрепить болтами.
- 2 Повернуть муфту опережения впрыскивания так, чтобы бобышки ведомой полумуфты установились в горизонтальное положение, а метка на торце муфты находилась в зоне указателя.

- 3 Установить фланец полумуфты в сборе с ведущей полумуфтой и пакетами пластин на вал привода, при этом выступ «а» на фланце полумуфты должен находиться с левой стороны, если смотреть на привод со стороны вентилятора.
- 4 Установить на двигатель топливный насос высокого давления с муфтой опережения (с гасителем) в сборе и закрепить его болтами. Перед затяжкой стяжного болта после установки угла опережения впрыскивания отрегулировать плоскостность пакетов пластин путем перемещения фланца полумуфты по валу привода. На блок цилиндров двигателя топливный насос устанавливать в вертикальном положении, крепления заворачивать равномерно, не допуская завала Окончательный момент затяжки болтов крепления насоса 30-40 Н м (3-4 кгс м).
- 5 Соединить секции насоса с форсунками топливопроводами высокого давления в порядке, показанном на рис. 39.
- 6 Отрегулировать угол опережения впрыскивания.
- 7 Проверить наличие масла в корпусах топливного насоса высокого давления и регулятора, при необходимости долить масло до уровня отверстия под трубку отвода масла.
- Подсоединить трубки подвода и отвода масла и топливопроводы.

После пуска двигателя подрегулировать минимальную частоту вращения холостого хода коленчатого вала следующим образом.

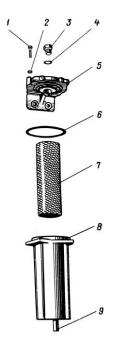
- 1 Ослабив контргайку, вывернуть корпус буферной пружины на 2 3 мм.
- 2 Болтом ограничения минимальной частоты вращения (рычаг управления должен упираться в этот болт) подрегулировать минимальную частоту вращения холостого хода до появления небольших колебаний частоты вращения коленчатого вала двигателя. При ввертывании болта обороты двигателя увеличиваются, при вывертывании уменьшаются.
- 3 Ввертывать корпус буферной пружины до исчезновения неустойчивости частоты вращения. Категорически запрещается ввертывать корпус буферной пружины до

совмещения его торца с торцом контргайки. После регулировки законтрить болт минимальной частоты вращения и корпус буферной пружины гайками.

Минимальную частоту вращения холостого хода можно подрегулировать также на новом двигателе в начальный период его эксплуатации.

Нарушать заводскую регулировку максимальных оборотов в процессе эксплуатации категорически запрещается.

СЛИВ ОТСТОЯ ИЗ ТОПЛИВНОГО ФИЛЬТРА ГРУБОЙ ОЧИСТКИ


Для слива отстоя из топливного фильтра грубой очистки отвернуть на 3-4 оборота пробку (рис. 37 поз. 9) и слить 0,1 л топлива в подставленную посуду.

После слива отстоя пробки завернуть и пустить двигатель на 3-4 минуты для удаления воздушных пробок.

Сливать отстой особенно важно в зимнее время для удаления конденсирующей воды.

ЗАМЕНА ЭЛЕМЕНТА ФИЛЬТРА ГРУБОЙ ОЧИСТКИ ТОПЛИВА

- 1. Слить отстой из фильтра.
- 2. Отвернуть четыре болта 1 (рис. 75) крепления колпака 8 фильтра к крышке 5, снять колпак фильтра и удалить старый фильтрующий элемент 7.
- 3. Тщательно промыть внутренние поверхности колпака чистым бензином или дизельным топливом.
- 4. Поставить новый элемент 7 и прокладку 6 в канавку крышки, установить колпак, и, убедившись в правильном (без смещения) положении прокладки, тщательно затянуть болты 1 крепления колпака к крышке. При затрудненном доступе к фильтру для исключения случаев смещения прокладки допускается перед установкой прокладку со стороны крышки смазать в нескольких точках консистентной смазкой.

- 5. Отвернуть пробку 3, залить в фильтр чистое топливо и тщательно завернуть пробку.
- 6. Пустить двигатель и убедиться в герметичности фильтра. При подтекании топлива подтянуть болты, устранить подсос воздуха.

Рис.75. Фильтр грубой очистки топлива:

1 – болт крепления; 2 – шайба; 3 – пробка; 4 – прокладка пробки; 5 – крышка; 6 – прокладка;
7 – фильтрующий элемент; 8 – колпак; 9 – сливная пробка

ЗАМЕНА СМЕННОГО ФИЛЬТРА ДЛЯ ТОПЛИВА ФИЛЬТРА ТОНКОЙ ОЧИСТКИ

- 7. Заглушить двигатель.
- 8. Отвернуть сменный фильтр для топлива 8 (см. рис. 76). В случае затруднённого отворачивания фильтра использовать специальный съёмник.
- 9. Смазать уплотнительное кольцо 7 нового сменного фильтра тонким слоем моторного масла, проверив при этом состояние его уплотнительного кольца и опорной поверхности корпуса.
- 10. Навернуть сменный фильтр на штуцер 1 до упора, затем довернуть на 3/4 оборота.
- 11. Прокачать топливную систему ручным топливопрокачивающим насосом.
- 12. Пустить двигатель и проверить фильтр на герметичность. При необходимости довернуть фильтр дополнительно.

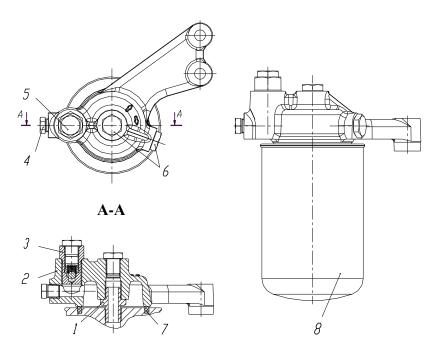


Рис. 76. Фильтр тонкой очистки топлива со сменным фильтром:

1 — штуцер; 2 — корпус фильтра тонкой очистки топлива; 3 — клапан жиклер; 4 — пробка; 5, 6 — пробки; 7 — кольцо уплотнительное; 8 — сменный фильтр для топлива

При замене использовать следующие сменные фильтры для топлива (см. раздел «Эксплуатационные материалы»):

- 1. ЛДКЯ 387639.004 (код 8.9642) фильтр сменный для топлива «DIFA 6103» производства СОАО «ДИФА» Республика Беларусь или «Торгового дома автофильтр ДИФА» г. Москва.
- 2. ФТ 047.1117010 (код 8.9132) фильтр сменный для топлива производства ОАО «Автоагрегат» г. Ливны.
- 3. 536.1117075 (код 8.9133) фильтр сменный для топлива WDK 940/1 (66 505 59 658) фирмы «MANN+HUMMEL».

ВНИМАНИЕ! ИСПОЛЬЗОВАТЬ ТОЛЬКО УКАЗАННЫЕ ВЫШЕ СМЕННЫЕ ФИЛЬТРЫ ДЛЯ ТОПЛИВА

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ ТУРБОКОМПРЕССОРА

Техническое обслуживание турбокомпрессора проводить через каждые 3000 часов работы двигателя.

При техническом обслуживании проверить осевой и радиальный люфты ротора с помощью индикатора.

Люфт определяется как разность показаний индикатора при отклонении вала в двух взаимно противоположных направлениях (рис. 77). Допустимые предельные величины люфтов: осевой - 0,081...0,124 мм, радиальный - 0,377...0,614 мм. Если люфты больше предельных значений, турбокомпрессор надо заменить.

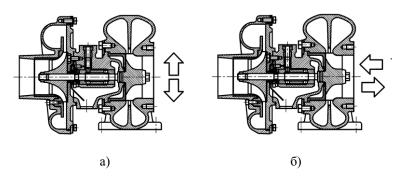


Рис. 77. Проверка люфта ротора: а) - радиального; б) - осевого

При установке турбокомпрессора на двигатель тщательно проследить за чистотой трубопроводов, подсоединяемых к турбокомпрессору и отсутствие в них предметов и мусора.

<u>После установки турбокомпрессора заполнить корпус</u> подшипников чистым маслом через отверстие подвода масла.

Тщательно следить за отсутствием подсосов и подтеканий в воздушных, газовых, масляных трубопроводах и их соединениях.

Следует иметь в виду, что оптимальный режим работы турбокомпрессора осуществляется в диапазоне более высокой частоты вращения коленчатого вала двигателя.

РАЗБОРКА И СБОРКА ТУРБОКОМПРЕССОРА

Для очистки деталей турбокомпрессора произвести его частичную разборку, для чего:

- 1. Снять турбокомпрессор с двигателя.
- 2. Нанести метки на корпусы турбокомпрессора с таким расчетом, чтобы при сборке сохранить взаимное расположение корпусов.
- 3. Отвернуть болты корпуса компрессора и снять корпус, не допуская его перекоса, таким образом, чтобы не повредить лопатки колеса компрессора.
- 4. Отвернуть болты крепления корпуса турбины и снять корпус. При затрудненном отвертывании болтов смазать их резьбу дизельным топливом.

Дальнейшая разборка турбокомпрессора в условиях эксплуатации не допускается.

Сборку турбокомпрессора производить в порядке, обратном разборке. Корпуса устанавливать осторожно, предохраняя от повреждения лопатки рабочих колес. Для обеспечения правильного взаимного расположения корпусов, использовать метки, нанесенные перед разборкой.

ОБСЛУЖИВАНИЕ ВОЗДУШНОГО ФИЛЬТРА

Несвоевременное обслуживание воздушного фильтра ухудшает очистку воздуха и приводит к проникновению пыли в двигатель, что вызывает повышенный износ цилиндропоршневой группы и преждевременный выход двигателя из строя.

Для нормальной работы двигателя требуется регулярное обслуживание воздушного фильтра, а также постоянное внимание к состоянию его деталей, особенно уплотнительных прокладок, и к правильной установке воздушного фильтра.

Обслуживание первой ступени воздушного фильтра производить периодически при сезонном обслуживании.

При длительной работе в условиях повышенной запыленности и при резких изменениях условий окружающей среды сроки обслуживания определять, исходя из опыта работы в данных условиях и состояния первой ступени.

Для обслуживания первой ступени фильтра отвернуть гайки крепления бункера. Снять бункер, заглушку бункера и удалить из него пыль. Отвернуть гайку крепления фильтрующих элементов и вынуть их. Корпус воздушного фильтра промыть в бензине, дизельном топливе или горячей воде, просушить.

При сборке воздушного фильтра обратить внимание:

- на состояние уплотнительных прокладок. Прокладки, имеющие надрывы, заменить. Качество уплотнения контролировать по наличию сплошного отпечатка на прокладке.
- при использовании двух фильтрующих элементов установка проставки между ними обязательна.
 - стрелка на бункере должна быть направлена вверх.

Фильтрующий элемент следует обслуживать по показанию индикатора засоренности воздушного фильтра: в случае отсутствия индикатора — при ТО-2, а в условиях повышенной запыленности — чаще, исходя из опыта эксплуатации в данных условиях. Ориентировочный срок службы фильтрующего элемента составляет 1500 часов. Излишне частое обслуживание фильтрующего элемента сокращает срок его службы, так как общее количество обслуживании элемента ограничено (не более 6 раз) из-за возможного разрушения фильтрующего картона.

Для обслуживания элемента снять крышку, отвернуть стержень или гайку крепления и вынуть элемент из корпуса фильтра. При наличии на картоне элемента пыли без сажи или при последующем немедленном его использовании обдуть элемент сухим сжатым воздухом до полного удаления пыли.

Во избежание прорыва фильтрующего картона давление сжатого воздуха должно быть не более 300 кПа (3 кгс/см²). Струю воздуха следует направлять под углом к поверхности и регулировать силу струи изменением расстояния шланга от элемента.

При наличии на картоне пыли, сажи, масла, если обдув сжатым воздухом неэффективен, промыть элемент в растворе моющего вещества ОП-7 или ОП-10 (ГОСТ 8433—81) в теплой (40—50°С) воде концентрации 20—25 г вещества на 1 литр воды.

Взамен раствора ОП-7 или ОП-10 можно использовать раствор той же концентрации стиральных порошков бытового назначения.

Для промывки элемента погрузить его на полчаса в указанный раствор с последующим интенсивным вращением или окунанием в растворе в течение 10—15 минут.

После промывки в растворе прополоскать элемент в чистой теплой воде и тщательно просушить. Для просушки запрещается применять открытое пламя и воздух с температурой выше 70°С.

После каждого обслуживания элемента или при установке нового проверить его состояние визуально, подсвечивая изнутри лампой. При наличии механических повреждений, разрыва гофр картона, отслаивания крышек и картона от клея, что может привести к пропуску пыли, элемент заменить.

Новый фильтрующий элемент 8421.1109080, 238Н-1109080 должен содержать:

- 215-220 гофр при ширине гофры 55 мм;
- 235-245 гофр при ширине гофры 48-50 мм.

ПРОВЕРКА ГЕРМЕТИЧНОСТИ ВПУСКНОГО ТРАКТА

Герметичность впускного тракта должна обеспечиваться уплотнительными и крепежными деталями промежуточных трубопроводов. Обращать повышенное внимание на состояние и правильность установки уплотнительных и крепежных деталей системы: рукавов, прокладок, хомутов. При необходимости — заменять. При отсутствии герметичности в цилиндры двигателя вместе с воздухом будет неизбежно попадать пыль и грязь, что приведет к преждевременному износу деталей цилиндропоршневой группы.

Контроль герметичности впускного тракта проводить путем создания в тракте избыточного давления с добавлением дыма. Для проверки герметичности впускного тракта вместо фильтрующего элемента установить заглушку (см. рис. 78) с закрепленным внутри нее тлеющим материалом (паклей, технической ватой и др.).

Размеры заглушки зависят от размеров фильтрующего элемента воздушного фильтра, на место которого устанавливается заглушка. К одной из трубок Ø10x1 заглушки подсоединить источник сжатого воздуха, к другой – контрольную трубку с краном или зажимом. В качестве источника сжатого воздуха можно пользоваться насосом для накачки шин или промышленной сетью с давлением воздуха 10-20 кПа (0,1-0,2) кгс/см²); более высокое давление приведет к разрушению трубопроводов.

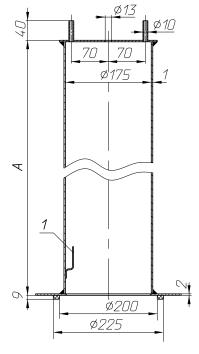
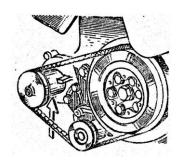


Рис. 78. Заглушка для проверки герметичности впускного тракта: 1 – кронштейн для закрепления тлеющего материала

Элемент фильтрующий	Размер А
238H-1109080	355
236H-1109080	355
8421.1109080	550


Открыв на время контрольную трубку, убедиться в заполнении впускного тракта дымом, после чего в течение 2–3 минут подавать в тракт воздух, проверяя внешним осмотром состояние впускного тракта. В местах негерметичности будет наблюдаться выход дыма.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ СИСТЕМЫ ОХЛАЖДЕНИЯ

От исправной работы системы охлаждения в значительной степени зависят экономичность, надежность, срок службы и другие показатели двигателя.

Для обеспечения нормальной работы двигателя выполнять следующие требования:

- 1. Заполнять систему охлаждения рекомендованными специальными низкозамерзающими жидкостями или в исключительных случаях на непродолжительное время чистой мягкой водой.
- 2. Заливать охлаждающую жидкость через воронку с сеткой, пользуясь чистой посудой.
- 3. Следить за температурой охлаждающей жидкости, поддерживая ее в пределах $75-90^{\circ}$ С.
- 4. Во избежание появления деформаций головок и рубашки блока цилиндров охлаждающую жидкость в систему охлаждения прогретого двигателя доливать постепенно и обязательно во время его работы.
- 5. Если система охлаждения заполнена водой, то регулярно промывать систему охлаждения чистой водой с помощью специального промывочного пистолета, а при отсутствии его сильной струей чистой воды, желательно пульсирующей. Систематически удалять накипь из системы охлаждения.
- 6. При применении в качестве охлаждающей жидкости Тосола необходимо периодически следить за его цветом. Если Тосол приобретает красно-бурую окраску, то это свидетельствует о его агрессивности по отношению к конструктивным материалам деталей двигателя. В этом случае Тосол необходимо заменить, промыв перед этим систему охлаждения (см. п. 5).
- 7. Следить за исправностью торцового уплотнения крыльчатки водяного насоса, имея в виду, что охлаждающая жидкость, просачивающаяся в подшипники водяного насоса, выводит их из строя. О неисправности торцового уплотнения свидетельствует течь воды из дренажного отверстия (рис. 79) на корпусе водяного насоса, закупоривать которое нельзя. Насос с неисправным уплотнением подлежит ремонту.
- 8. В случае нарушения температурного режима проверить исправность термостатов и их прокладок. Температура начала открытия основного клапана термостата должна быть $80\pm2^{\circ}\mathrm{C}$

(указана на корпусе термостата). Клапан должен открываться полностью, перемещаясь не менее на 8 мм от его седла. Неисправный термостат заменить новым.

Рис. 79. Дренажное отверстие

9. Для исключения размораживания радиатора при эксплуатации в зимних условиях система охлаждения двигателя при применении термостатов с дренажным клапаном должна быть заправлена только низкозамерзающей жидкостью (см. раздел «Эксплуатационные материалы»). Указанные термостаты имеют обозначение Т117-06 или ТС107-06М, выполнены из нержавеющей стали (вместо латуни на ранее применявшихся термостатах) и устанавливаются на двигатели с марта 2007 г.

УДАЛЕНИЕ НАКИПИ ИЗ СИСТЕМЫ ОХЛАЖДЕНИЯ

Накипь из системы охлаждения удалять раствором технического трилона Б (ТУ 6-01-634–71) в воде концентрации 20~г/л. Трилон — порошок белого цвета, не ядовит, легко растворяется в воде, не вызывает вспенивания воды при ее нагреве и кипячении.

Раствор трилона заливать в систему охлаждения. После одного дня работы двигателя (не менее 6–7 ч) отработанный раствор слить и залить свежий. Промывку продолжать в течение четырех—пяти дней. После окончания промывки в систему охлаждения залить воду, содержащую 2 г/л трилона.

При отсутствии трилона Б накипь из системы охлаждения допускается удалять раствором, состоящим из кальцинированной (стиральной) соды в количестве 0,5 кг на 10 л воды и керосина 1 кг на 10 л воды. Раствор залить в систему охлаждения на 24 часа, из которых двигатель не менее 8 часов должен работать на эксплуатационном режиме, после чего слить раствор в горячем состоянии, а после охлаждения двигателя промыть систему охлаждения чистой водой.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ ЭЛЕКТРООБОРУДОВАНИЯ

Во время эксплуатации предохранять агрегаты электрооборудования от попадания на них масла и топлива, а также воды при мойке двигателя.

ВНИМАНИЕ! ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ ГЕНЕРАТОРА ПРОВОДИТЬ В СООТВЕТСТВИИ С ПОЛОЖЕНИЯМИ «РУКОВОД-СТВА ПО ЭКСПЛУАТАЦИИ» ИЗДЕЛИЯ, НА КОТОРОЕ УСТАНАВЛИВАЕТСЯ СИЛОВОЙ АГРЕГАТ, И, В СЛУЧАЕ ОТСУТСТВИЯ ТАКИХ УКАЗАНИЙ, РУКОВОДСТВОВАТЬСЯ НАСТОЯЩИМ РУКОВОДСТВОМ.

ГЕНЕРАТОР

Периодичность и объем работ технического обслуживания генераторов различных моделей имеют отличия. Необходимо руководствоваться положениями технического обслуживания соответствующие модели генератора, установленного на Вашем силовом агрегате.

ВНИМАНИЕ! ЗАПРЕЩАЕТСЯ НА АВТОМОБИЛЕ ПУСК ДВИГАТЕЛЯ ПРИ ОТКЛЮЧЕННОМ ПЛЮСОВОМ ПРОВОДЕ ГЕНЕРАТОРА. ЭТО ПРИВЕДЕТ К ВОЗНИКНОВЕНИЮ НА ГЕНЕРАТОРЕ ПОВЫШЕННОГО НАПРЯЖЕНИЯ ОПАСНОГО ДЛЯ КРЕМНИЕВЫХ ВЫПРЯМИТЕЛЕЙ.

ПРИ ДЛИТЕЛЬНЫХ СТОЯНКАХ АВТОМОБИЛЯ ОТКЛЮЧАТЬ ВЫКЛЮЧАТЕЛЬ МАССЫ ВО ИЗБЕЖАНИЕ РАЗРЯДА АККУМУЛЯТОРНЫХ БАТАРЕЙ ЧЕРЕЗ ОБМОТКУ ВОЗБУЖДЕНИЯ ГЕНЕРАТОРА.

ВО ИЗБЕЖАНИЕ ВЫХОДА ИЗ СТРОЯ ГЕНЕРАТОРНОЙ УСТАНОВКИ ЗАПРЕЩАЕТСЯ:

- ОТКЛЮЧЕНИЕ ПРОВОДА ОТ ПЛЮСОВОГО ВЫВОДА ГЕНЕРАТОРА ИЛИ ОТКЛЮЧЕНИЕ БАТАРЕИ ВЫКЛЮЧАТЕЛЕМ МАССЫ ПРИ РАБОТАЮЩЕМ ГЕНЕРАТОРЕ;
- ПРОВЕРКА ИСПРАВНОСТИ ГЕНЕРАТОРНОЙ УСТАНОВКИ ПУТЕМ ЗАМЫКАНИЯ КЛЕММ ПЕРЕМЫЧКАМИ НА МАССУ И МЕЖДУ СОБОЙ.

ПРИ УСТАНОВКЕ АККУМУЛЯТОРНЫХ БАТАРЕЙ НА АВТОМОБИЛЬ И ИХ ПОДКЛЮЧЕНИИ СТРОГО СОБЛЮДАТЬ ПОЛЯРНОСТЬ («+» В ЦЕПЬ, « – » НА МАССУ).

ПРОВЕРКУ НАТЯЖЕНИЯ ПРИВОДНЫХ РЕМНЕЙ И НАДЕЖНОСТИ ПОДКЛЮЧЕНИЯ ПРОВОДОВ К ГЕНЕРАТОРНОЙ УСТАНОВКЕ ПРОВОДИТЬ ПРИ НЕРАБОТАЮЩЕМ ДВИГАТЕЛЕ И ОТКЛЮЧЕННОЙ АККУМУЛЯТОРНОЙ БАТАРЕЕ.

ОТСОЕДИНЕНИЕ И ПРИСОЕДИНЕНИЕ ПРОВОДОВ К ГЕНЕРАТОРУ ВЫПОЛНЯТЬ ТОЛЬКО ПРИ ОТКЛЮЧЕННОЙ АККУМУЛЯТОРНОЙ БАТАРЕЕ.

ИСПРАВНАЯ РАБОТА ГЕНЕРАТОРА ОБЕСПЕЧИВАЕТСЯ ПРИ УСЛОВИИ НАДЕЖНОГО СОЕДИНЕНИЯ ВСЕХ КОНТАКТОВ, В ТОМ ЧИСЛЕ МЕЖДУ КОРПУСОМ ГЕНЕРАТОРА И ДВИГАТЕЛЕМ.

ПРОВЕРКУ ВЫПРЯМИТЕЛЬНОГО БЛОКА ТОЛЬКО ОТ ИСТОЧНИКА ПОСТОЯННОГО ТОКА НАПРЯЖЕНИЕМ НЕ БОЛЕЕ 24 В, ВКЛЮЧЕННОГО ПОСЛЕДОВАТЕЛЬНО С КОНТРОЛЬНОЙ ЛАМПОЙ.

ПРИ ПРОВЕДЕНИИ СВАРОЧНЫХ РАБОТ НА АВТОМОБИЛЕ ОТКЛЮЧИТЬ ПРОВОДА ОТ КЛЕММ «+», «D», «W». ПРОВОД МАССЫ СВАРОЧНОГО АППАРАТА ДОЛЖЕН БЫТЬ ПОДСОЕДИНЕН В НЕПОСРЕДСТВЕННОЙ БЛИЗОСТИ ОТ СВАРНОГО ШВА.

КАТЕГОРИЧЕСКИ ЗАПРЕЩАЕТСЯ ПРОИЗВОДИТЬ ПОВТОРНОЕ РАЗВОЗБУЖДЕНИЕ ГЕНЕРАТОРА НАЖАТИЕМ КНОПКИ ЭФУ ПРИ ЗАПУЩЕННОМ ДВИГАТЕЛЕ, ТАК КАК ЭТО МОЖЕТ ПРИВОДИТЬ К ОТКАЗАМ РЕГУЛЯТОРА НАПРЯЖЕНИЯ. ГЕНЕРАТОР ДОЛЖЕН БЫТЬ РАЗВОЗБУЖДЕН ПЕРЕД ЗАПУСКОМ ДВИГАТЕЛЯ ПРИ ИСПОЛЬЗОВАНИИ ЭФУ.

ГЕНЕРАТОР Г273В2

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

При ежедневном ТО проверять работу генератора по показаниям контрольной лампы и указателю тока заряда аккумуляторной батареи. При запуске двигателя контрольная лампа должна загораться, а после пуска двигателя – погаснуть.

При каждом ТО-2 проверить надежность крепления генератора к двигателю, натяжение ремней и соединение проводов с выводами генератора.

После каждых 50000 км пробега автомобиля необходимо:

- 1. Снять щеткодержатель в сборе с регулятором напряжения, очистить его от пыли и грязи.
- 2. Проверить высоту щеток в нерабочем положении и давление щеточных пружин. Выступание щетки из канала щеткодержателя должно быть не менее 5 мм, а давление пружин должно соответствовать указанному в технической характеристике генератора. При необходимости шетки заменить.

- 3. Проверить состояние контактных колец генератора. В случае необходимости проточки контактных колец снять генератор с двигателя, очистить его от пыли и грязи и разобрать. Минимально допустимый диаметр проточки контактных колец 29,3 мм.
- 4. Внимательно осмотреть подшипники, в случае обнаружения дефекта заменить их.
- 5. Собрать генератор.
- 6. Проверить электрические параметры.

РАЗБОРКА И СБОРКА ГЕНЕРАТОРНОЙ УСТАНОВКИ

ВНИМАНИЕ! ПОЛНАЯ РАЗБОРКА ГЕНЕРАТОРА ДО ИСТЕЧЕНИЯ ГАРАНТИИ ЗАПРЕЩАЕТСЯ. БЕЗ КРАЙНЕЙ НЕОБХОДИМОСТИ ЛЮБАЯ РАЗБОРКА НЕ РЕКОМЕНДУЕТСЯ. РАЗБОРКУ ГЕНЕРАТОРА ПРОИЗВОДИТЬ ТОЛЬКО В СПЕЦИАЛЬНОЙ МАСТЕРСКОЙ, РАСПОЛАГАЮЩЕЙ НЕОБХОДИМЫМИ ИНСТРУМЕНТАМИ И ИЗМЕРИТЕЛЬНЫМИ ПРИБОРАМИ.

Снять генераторную установку с двигателя, очистить от пыли и грязи и разобрать в следующем порядке:

- 1. Отвернуть верхнюю гайку крепления вывода «+» и отсоединить вывод конденсатора.
- 2. Отсоединить провод со штекером от щеткодержателя.
- 3. Отвернуть два винта крепления щеткодержателя к крышке и аккуратно снять его с генератора.
- 4. Отвернуть четыре стяжных винта и снять крышку со стороны контактных колец вместе со статором.
- 5. Отвернуть три гайки крепления фазных выводов статора к выпрямительному блоку, статор отделить от крышки.
- 6. Отвернуть гайку крепления шкива.
- 7. Снять шкив и вентилятор. Извлечь шпонку и снять упорную втулку.
- 8. Снять крышку со стороны привода вместе с подшипником с вала ротора.

Сборку генератора производить в обратной последовательности. При необходимости отделения выпрямительного блока от крышки, отвернуть гайку крепления вывода «+», три винта крепления блока к крышке и разъединить вывод блока со штекером колодки.

При разборке и сборке генератора пользоваться съемником и приспособлениями.

ПРОВЕРКА ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ

Проверку электрических параметров производить на универсальном стенде по схеме, приведенной на рис. 80.

Генератор должен соответствовать данным, указанным в разделе «Техническая характеристика генератора Γ 273B2».

При проверке выключатели Q1 и Q2 замкнуты, а выключатель Q3 разомкнут (при положении посезонной регулировки «лето»).

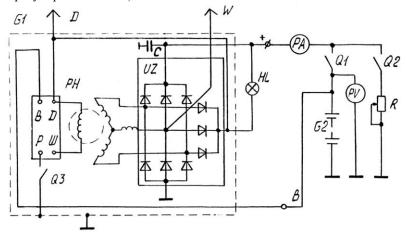


Рис. 80. Схема для проверки электрических характеристик: G1 – генератор; G2 – батарея аккумуляторная; UZ – блок БПВ; PH – регулятор напряжения; С – конденсатор; R – сопротивление нагрузки; PA – амперметр; PV – вольтметр; Q1, Q2 – выключатели; Q3 – переключатель посезонной регулировки; HL – лампа контрольная 28В 2 Вт; «+», «—», «В», «D» – выводы генератора.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

При ежедневном ТО проверять работу генератора по показаниям контрольной лампы и указателю тока заряда аккумуляторной батареи. При запуске двигателя контрольная лампа должна загораться, а после пуска двигателя – погаснуть.

При ТО-1 без снятия генератора с двигателя проводить техническое обслуживание в следующем объеме:

- 1. Проверить затяжку и при необходимости подтянуть крепление генератора к двигателю.
- 2. Проверить затяжку и чистоту мест присоединения проводов к генератору, аккумуляторной батарее и регулятору напряжения. При необходимости очистить места соединений и подтянуть контактные гайки и винты.
- 3. Проверить состояние щеточного узла, для чего:
 - отсоединить штекер от генератора;
 - отвернуть винты крепления щеткодержателя и аккуратно снять его;
 - проверить свободное (без заеданий и рывков) перемещение щеток в направляющих щеткодержателя;
 - проверить высоту щеток, которая должна быть не менее 8 мм. Изношенные щетки, при необходимости, заменить. При замене щеток проверить состояние контактных колец. Если износ контактных колец превышает 0.5 мм по диаметру, кольца проточить.
 - установить щеткодержатель со щетками на генератор в обратной последовательности.

При необходимости генератор разобрать. Разборку генератора производить только в специальной мастерской, располагающей необходимыми инструментами и измерительными приборами. Внимательно осмотреть шарикоподшипники. При наличии дефекта шарикоподшипники заменить. Собрать генератор и проверить электрические параметры.

РАЗБОРКА И СБОРКА ГЕНЕРАТОРНОЙ УСТАНОВКИ

ВНИМАНИЕ! ПОЛНАЯ РАЗБОРКА ГЕНЕРАТОРА ДО ИСТЕЧЕНИЯ ГАРАНТИИ ЗАПРЕЩАЕТСЯ. БЕЗ КРАЙНЕЙ НЕОБХОДИМОСТИ ЛЮБАЯ РАЗБОРКА НЕ РЕКОМЕНДУЕТСЯ

Снять генераторную установку с двигателя, очистить от пыли и грязи и разобрать в следующем порядке:

- 1 Отвернуть два винта крепления щеткодержателя и аккуратно снять его с генератора.
- 2 Отвернуть четыре винта и снять крышку со стороны контактных колец вместе со статором.
- 3 Отвернуть три гайки крепления выводов статора к выпрямительному блоку, статор отделить от крышки.
- 4 Отвернуть гайку крепления шкива и снять шкив и вентилятор. Извлечь шпонку и снять упорную втулку.
- 5 Снять с вала ротора крышку со стороны привода при помощи пресса.

Сборку генератора производить в порядке, обратном разборке.

ПРОВЕРКА ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ

Проверку электрических параметров производить на универсальном стенде по схеме, приведенной на рис. 81, при отсоединенном нулевом выводе обмотки статора от нулевого вывода регулятора.

Генератор должен соответствовать данным, указанным в разделе «Техническая характеристика генератора 1322.3771».

При проверке выключатель Q1 разомкнут, а выключатели Q2, Q3 замыкаются. Частота вращения ротора постепенно повышается, пока напряжение не достигнет значения 26 В по вольтметру PV. Значения тока нагрузки устанавливаются по амперметру PA.

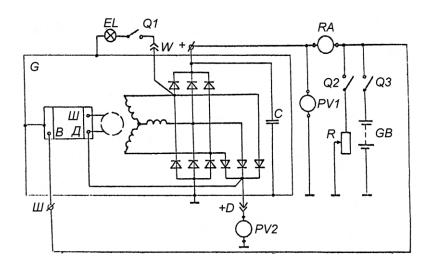


Рис. 81. Схема для проверки электрических характеристик: G-генератор; GB-аккумуляторная батарея; С-конденсатор 2,2 мкФ±20%; R-реостат нагрузочный на ток не менее 60 A; PV1 PV2-вольтметры; PA – амперметр; Q1-Q3-выключатели; EL-контрольная лампа; «Ш», «+», «W», «+D»-выводы генератора

1702.3771

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

При ежедневном ТО проверять работу генератора по показаниям контрольной лампы и указателю тока заряда аккумуляторной батареи. При запуске двигателя контрольная лампа должна загораться, а после пуска двигателя – погаснуть.

При ТО-1 без снятия генератора с двигателя проводить техническое обслуживание в следующем объеме:

- 1. Проверить затяжку и при необходимости подтянуть крепление генератора к двигателю.
- Проверить затяжку и чистоту мест присоединения проводов к генератору, аккумуляторной батарее и регулятору напряжения. При необходимости очистить места соединений и подтянуть контактные гайки и винты.

- 3. Проверить состояние щеточного узла, для чего:
 - отсоединить штекер от генератора;
 - отвернуть винты крепления щеткодержателя и аккуратно снять его;
 - проверить свободное (без заеданий и рывков) перемещение щеток в направляющих щеткодержателя;
 - проверить высоту щеток, которая должна быть не менее 8 мм. Изношенные щетки, при необходимости, заменить. При замене щеток проверить состояние контактных колец. Если износ контактных колец превышает 0.5 мм по диаметру, кольца проточить до ровной поверхности.
 - установить щеткодержатель со щетками на генератор в обратной последовательности.

При необходимости генератор разобрать. Разборку генератора производить только в специальной мастерской, располагающей необходимыми инструментами и измерительными приборами. Внимательно осмотреть шарикоподшипники. При наличии дефекта шарикоподшипники заменить. Собрать генератор и проверить электрические параметры.

РАЗБОРКА И СБОРКА ГЕНЕРАТОРНОЙ УСТАНОВКИ

ВНИМАНИЕ! ПОЛНАЯ РАЗБОРКА ГЕНЕРАТОРА ДО ИСТЕЧЕНИЯ ГАРАНТИИ ЗАПРЕЩАЕТСЯ. БЕЗ КРАЙНЕЙ НЕОБХОДИМОСТИ ЛЮБАЯ РАЗБОРКА НЕ РЕКОМЕНДУЕТСЯ.

Снять генераторную установку с двигателя, очистить от пыли и грязи и разобрать в следующем порядке:

- 1. Отвернуть два винта крепления щеткодержателя и аккуратно снять его с генератора.
- 2. Отвернуть четыре винта и снять крышку со стороны контактных колец вместе со статором.
- 3. Отвернуть три гайки крепления выводов статора к выпрямительному блоку, статор отделить от крышки.
- 4. Отвернуть гайку крепления шкива и снять шкив и вентилятор. Извлечь шпонку и снять упорную втулку.

5. Снять с вала ротора крышку со стороны привода при помощи пресса.

Сборку генератора производить в порядке, обратном разборке.

ПРОВЕРКА ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ

Проверку электрических параметров производить на универсальном стенде по схеме, приведенной на рис. 82. При этом питание обмотки возбуждения осуществляется от постороннего источника постоянного тока напряжением 28 В и устанавливается по вольтметру PV3.

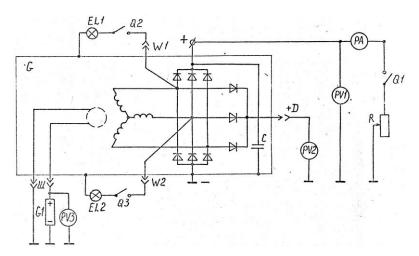


Рис. 82. Схема для проверки электрических характеристик: G – генератор; G1 – аккумуляторная батарея; C – конденсатор 2,2 мк Φ ; R – сопротивление; PV1, PV2, PV3 – вольтметры; PA – амперметр; Q1-Q3 – выключатели; «+D»–клемма дополнительных диодов; W1, W2 – выводы фаз; EL1, EL2 – контрольные лампы; «Ш», «+», «—» – выводы генератора

Генератор должен соответствовать данным, указанным в разделе «Техническая характеристика генератора 1702.3771».

При проверке выключатели Q2 и Q3 размыкаются, а выключатель Q1 замыкается при проверке с нагрузкой. При испытании без нагрузки и с нагрузкой частота вращения ротора постепенно повышается, пока напряжение по вольтметру PV1 не достигнет значения 28 В. При испытании с нагрузкой устанавливается требуемая величина тока нагрузки по амперметру PA, после чего замеряется частота вращения ротора.

6582.3701-03

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

При ежедневном ТО проверять работу генератора по показаниям контрольной лампы и указателю тока заряда аккумуляторной батареи. При запуске двигателя контрольная лампа должна загораться, а после пуска двигателя – погаснуть.

При каждом втором ТО-2 проверить надежность крепления генератора к двигателю, натяжение ремня и соединение проводов с выводами генератора.

После каждых 150000 км пробега необходимо:

- 1. Снять щеткодержатель в сборе с регулятором напряжения, очистить его от пыли и грязи.
- 2. Проверить высоту щеток в нерабочем положении и давление щеточных пружин. Выступание щетки из канала щеткодержателя должно быть не менее 5 мм, а давление пружин должно соответствовать указанному в технической характеристике генератора. При необходимости щетки заменить.
- 3. Проверить состояние контактных колец генератора. В случае необходимости проточки контактных колец снять генератор с двигателя, очистить его от пыли и грязи и разобрать. Минимально допустимый диаметр проточки контактных колец 29,3 мм.
- 4. Внимательно осмотреть подшипники, в случае обнаружения дефекта заменить их.
- 5. Собрать генератор.
- 6. Проверить электрические параметры.

ПРОВЕРКА ТЕХНИЧЕСКОГО СОСТОЯНИЯ ГЕНЕРАТОРА

Проверка генератора на двигателе с помощью вольтметра заключается в следующем:

При включенной аккумуляторной батарее, установите частоту вращения двигателя 1500...1700 мин⁻¹, подключите вольтметр между "+" и не закрашенным местом корпуса генератора, а также аккумуляторной батарее. Напряжение должно быть в пределах 27,3–29,1 В. Если разница в показаниях при измерении напряжения на генераторе и аккумуляторной батарее около 1,5 В, то необходимо внимательно осмотреть силовую цепь, обратив внимание на клеммовые соединения. Слабые соединения затянуть, зачистить контактирующие поверхности.

В условиях повседневной эксплуатации проверка осуществляется по указателю напряжения, расположенному на щитке приборов, для чего:

- остановить двигатель не отключая потребители. Стрелка указателя напряжения должна показывать «разряд»;
- при оборотах 1000 мин⁻¹ стрелка должна показывать «заряд».
- напряжение значительно отличается, то генератор необходимо снять с двигателя и проверить его неисправность с разборкой.

РАЗБОРКА И СБОРКА ГЕНЕРАТОРНОЙ УСТАНОВКИ

ВНИМАНИЕ! ПОЛНАЯ РАЗБОРКА ГЕНЕРАТОРА ДО ИСТЕЧЕНИЯ ГАРАНТИИ ЗАПРЕЩАЕТСЯ. БЕЗ КРАЙНЕЙ НЕОБХОДИМОСТИ ЛЮБАЯ РАЗБОРКА НЕ РЕКОМЕНДУЕТСЯ. РАЗБОРКУ ГЕНЕРАТОРА ПРОИЗВОДИТЬ ТОЛЬКО В СПЕЦИАЛЬНОЙ МАСТЕРСКОЙ, РАСПОЛАГАЮЩЕЙ НЕОБХОДИМЫМИ ИНСТРУМЕНТАМИ И ИЗМЕРИТЕЛЬНЫМИ ПРИБОРАМИ.

Снять генераторную установку с двигателя, очистить от пыли и грязи и разобрать в следующем порядке:

- 1. Отсоединить провод со штекером от вывода «Д».
- 2. Отвернуть два винта крепления щеткодержателя и аккуратно снять его с генератора.

- 3. Отвернуть три стяжных винта и снять крышку со стороны контактных колец вместе со статором.
- 4. Отвернуть три гайки крепления фазных выводов статора к выпрямительному блоку, статор отделить от крышки.
- 5. Отвернуть гайку крепления шкива и снять шкив и вентилятор. Извлечь шпонку и снять упорную втулку.
- 6. Снять с вала ротора крышку со стороны привода вместе с подшипником.

Сборку генератора производить в порядке, обратном разборке. При сборке и разборке генератора пользоваться съемником и приспособлениями.

ПРОВЕРКА ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ

Проверку электрических параметров производить на универсальном стенде по схеме, приведенной на рис. 83.

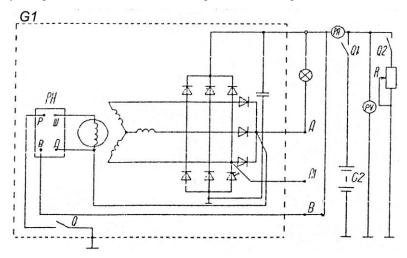


Рис. 83. Схема для проверки электрических характеристик: G1-генератор; G2-аккумуляторная батарея; PA — амперметр; PV1-вольтметр; R-сопротивление нагрузки; С-конденсатор; Q1, Q2-выключатели; PH-регулятор напряжения; Q-переключатель посезонной регулировки; HL-контрольная лампа; «Л1», «+», «В», «D»-выводы генератора

Генератор должен соответствовать данным, указанным в разделе «Техническая характеристика генератора 6582.3701-03».

При проверке выключатели Q1 и Q2 замкнуты, а выключатель Q3 разомкнут (при положении посезонной регулировки «лето».

5702,3701

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Для обеспечения надежной и безотказной работы генератора в условиях эксплуатации, необходимо содержать генератор в чистоте и выполнять следующие правила технического обслуживания.

При ежедневном обслуживании:

Проверьте работу генератора по показанию указателя тока после пуска двигателя, когда батарея несколько разряжена стартером. При этом, на средней частоте вращения двигателя, генератор должен давать некоторый зарядный ток, величина которого спадает по мере восстановления заряда батареи. При исправной и полностью заряженной батарее, малый ток не свидетельствует о неисправности генератора.

При техническом обслуживании ТО-2.

- 1. Проверить затяжку, и при необходимости, подтянуть болты крепления генератора.
- 2. Проверить натяжение приводного ремня, при необходимости отрегулировать.
- 3. Проверить затяжку и чистоту всех мест присоединения проводов к генератору, регулятору и аккумуляторной батарее. При необходимости очистите места присоединения и подтяните контактные гайки и винты.

После наработки 4000 моточасов дополнительно проделайте следующее:

- 1. Снять генератор.
- 2. Продуть генератор сжатым воздухом для удаления пыли.
- 3. Проверить состояние щеточного узла, для чего отвернуть два винта крепления щеткодержателя к крышке и вынуть щеткодержатель.

- 4. Проверить, свободно ли перемещаются щетки в щеткодержателе. При затрудненном перемещении щетки прочистить. Высота щеток должна быть не менее 8 мм.
- 5. Осмотреть контактные кольца. Если износ контактных колец превышает 0,5 мм по диаметру, генератор надо разобрать и кольца проточить. Допустимый диаметр после проточки контактных колец 28,5-0.28 мм.
- 6. Заменить шарикоподшипники в случае заедания или сильного шума.
- 7. Проверить, и при необходимости подтянуть стяжные шпильки и гайку крепления шкива генератора.
- 8. Собрать генератор, проверить его электрические параметры.

РАЗБОРКА И СБОРКА ГЕНЕРАТОРА

- 1. Отвернуть два винта крепления щеткодержателя к крышке и снять его.
- 2. Отвернуть два винта крепления колодки к крышке и снять ее.
- 3. Снять крышку шарикоподшипника.
- 4. Отвернуть стяжные шпильки.
- Снять крышку со стороны контактных колец вместе со статором. При необходимости крышку снять съемником.
- 6. Отсоединить фазные обмотки статора и выводы колодки от выводов на выпрямительном блоке в крышке со стороны контактных колец и снять статор.
- 7. Отвернуть гайку крепления шкива и, при помощи съемника, снять шкив.
- 8. Снять вентилятор, дистанционную втулку и вынуть шпонку.
- 9. Снять крышку со стороны привода с вала ротора.
- 10. Отвернуть четыре винта держателя шарикоподшипника и выпрессовать шарикоподшипник из гнезда крышки со стороны привода.
- 11. Сборку генератора производить в обратном порядке. Затяжку гайки шкива производить моментом 23,4...35,3 H·m (2,3-3,5 кгс·м).

КОНТРОЛЬНАЯ ПРОВЕРКА ГЕНЕРАТОРА

Контрольная проверка генератора 5702.3701 представляет собой проверку частоты вращения ротора генератора без нагрузки и с нагрузкой. Если генератор исправен, то его параметры должны соответствовать указанным в разделе "Техническая характеристика генератора".

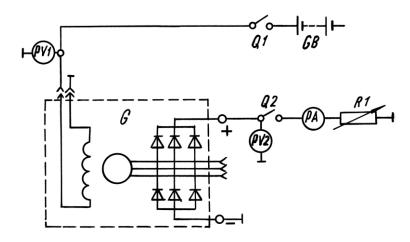


Рис. 84. Схема соединений для проверки характеристик генератора

G - генератор; Q1 и Q2 - выключатели; РУ1 и РУ2 вольтметры;

R1 - реостат; РА - амперметр; GB-аккумуляторная батарея.

Проверка производится на специальном стенде с приводом, позволяющим изменять частоту вращения ротора генератора от 0 до 3000 мин^{-1} по схеме (рис. 84).

Питание обмотки возбуждения осуществляется от постороннего источника постоянного тока напряжением 28 В. При этом выключатель Q1 замыкается, выключатель Q2 разомкнут. Выключатель Q2 замыкается при проверке с нагрузкой.

УСТАНОВКА ГЕНЕРАТОРА НА ДВИГАТЕЛЬ

Перед установкой генератора на двигатель выключить выключатель массы.

Генератор устанавливать на двигатель в следующем порядке:

- 1. Вставить палец 6 (рис. 85) в отверстие задней крышки генератора и закрепить гайкой 3 с шайбами 5 и 8.
- 2. Установить генератор на кронштейн 4 так, чтобы палец вошел в разрезное отверстие кронштейна.
- 3. Вставить болт 2 в отверстие передней лапы генератора и ввернуть его в отверстие кронштейна, не затягивая. Валы шкивов передачи должны быть расположены параллельно, а канавки шкивов друг против друга.
 - 4. Отрегулировать натяжение ремней привода генератора, после чего надежно закрепить генератор на двигателе (см. раздел «Регулировка двигателя»).
 - 5. Надежно присоединить провода к выводам генератора.

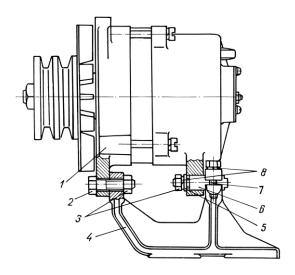


Рис. 85. Крепление генератора на двигателе:

1 — генератор; 2,7 — болты; 3 — гайки; 4 — кронштейн крепления генератора; 5 — шайба; 6 — палец; 8 — пружинная шайба

CTAPTEP

Периодически проверять надежность присоединения наконечников в электропроводке стартера, очищать наконечники проводов и клеммы аккумуляторной батареи от налетов окислов и грязи.

Разборку и регулировку стартера можно производить только по истечении гарантийного срока в специализированной мастерской, располагающей всеми необходимыми инструментами и измерительными приборами.

Техническое обслуживание стартера производить в указанном ниже объеме:

- 1. Снять стартер с двигателя.
- 2. Снять крышку коллектора и траверсу.
- 3. Осмотреть коллектор, рабочая поверхность которого должна быть гладкой и не иметь подгоревших мест. В случае загрязнения или незначительного подгара коллектор протереть чистой тряпкой, смоченной в бензине. Оставшуюся после этого грязь или подгар зачистить мелкозернистой шлифовальной шкуркой.
- 4. Проверить высоту и состояние щеток. Щетки должны свободно перемещаться в щеткодержателях и не иметь чрезмерного износа. Щетки, изношенные по высоте до 14 мм, заменить. Высоту щетки замерять от места касания пружины до притертой рабочей поверхности.
- 5. Проверить затяжку винтов, крепящих наконечники щеточных канатиков к щеткодержателям; при необходимости подтянуть их.
- 6. Проверить состояние контактной системы реле стартера. При подгорании рабочих поверхностей контактных болтов и диска их следует зачистить мелкозернистой шлифовальной шкуркой, неровности, вызванные подгоранием, не нарушая при этом параллельности контактной поверхности. При значительном износе контактные болты повернуть вокруг оси на 180°, а контактный диск перевернуть на сторону, предварительно зачистив поверхность шлифовальной мелкозернистой шкуркой.
- 7. Проверить свободную с качкой посадку контактного диска на штоке якоря реле.

- 8. Проверить надежность крепления реле к корпусу стартера, при необходимости подтянуть крепежные болты и законтрить их замковыми шайбами.
- 9. Вынув пробки, залить в масленки по 10 капель моторного масла (до полной пропитки войлочных фильцев), после чего пробки поставить на место.
- 10. Очистить привод стартера от грязи, шестерню стартера вдвинуть в корпус привода, залить в корпус привода моторное масло, сделать 5–10 движений шестерни вдоль вала, после чего масло вылить. Указанную операцию повторить 2–3 раза и залить масло в корпус привода.

РАЗБОРКА И СБОРКА СТАРТЕРА

- 1. Отвернуть гайки крепления на крышке коллектора.
- 2. Отвернуть гайки с выводных болтов и снять шину.
- 3. Отвернуть и вынуть две стяжные шпильки.
- 4. Снять крышку со стороны коллектора.
- Отвернуть винты крепления щеточных канатиков и, приподняв щеточные пружины, вынуть щетки из щеткодержателей.
- 6. Снять траверсу.
- 7. Отвернуть винты крепления кожуха, отсоединить реле от корпуса и снять его вместе с кожухом.
- 8. Снять корпус вместе с катушками возбуждения.
- 9. Отвернуть шесть винтов и снять крышку привода.
- 10. Вынуть якорь из корпуса привода.
- 11. Вынуть привод из корпуса.
- 12. Отвернуть винты крепления оси рычага и вынуть ось из посадочных отверстий корпуса и рычага.
- 13. Вынуть рычаг.
- 14. Отвернуть винты крепления шайбы и снять шайбу.
- 15. Вынуть сальник из корпуса привода.

Сборку стартера проводить в порядке, обратном разборке. Перед сборкой смазать шлицы и шейки вала якоря, шайбу между железом якоря и корпусом привода, упорную шайбу смазкой Литол-24 (ГОСТ 21150–87). Вынуть фильцы, при необходимости заменить их и перед закладкой пропитать моторным маслом, применяемым для смазки двигателя.

При необходимости заменить при сборке замковые шайбы, уплотнительные кольца, уплотнительные шайбы и прокладки.

РЕГУЛИРОВКА РЕЛЕ СТАРТЕРА

Плюсовую клемму аккумуляторной батареи соединить с выводным болтом 3 (рис. 86), минусовую клемму-с «массой» стартера. Включатель стартера соединить с клеммой 6 реле стартера. Для контроля замыкания реле подсоединить 24 В лампочку 4.

Поставить прокладку 2 (рис. 87) толщиной 23 мм на вал якоря между шестерней 1 и упорной шайбой 3. Контакты реле при этом должны быть разомкнуты и лампочка не гореть. Снять прокладку и отрегулировать зазор между втулкой привода и упорной шайбой при включенном реле до $1^{+1.5}$ мм.

Зазор регулировать при включенном реле путем поворачивания оси рычага с диском 4; при этом выемка «А» на диске должна быть ниже его горизонтальной оси «Б». Контакты реле должны быть замкнуты, и лампочка 4 (рис. 86) гореть.

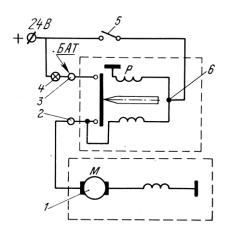


Рис. 86. Схема проверки замыкания контактов реле:

1 – электродвигатель стартера; 2 – клемма подключения перемычки стартера к реле; 3 – выводной болт подключения аккумуляторной батареи к реле; 4 – контрольная лампочка; 5 – выключатель; 6 – клемма подключения провода от выключателя к обмоткам реле

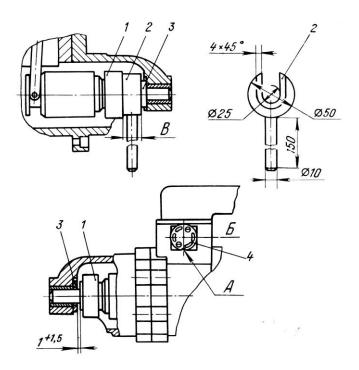


Рис. 87. Проверка замыкания контактов реле стартера: 1 – шестерня стартера; 2 – прокладка; 3 – упорная шайба; 4 – диск оси рычага

УСТАНОВКА СТАРТЕРА НА ДВИГАТЕЛЬ

Установить стартер до упора его фланца в картер маховика так, чтобы направляющий штифт на блоке цилиндров вошел в паз стартера.

Закрепить стартер скобой и затянуть болт крепления скобы моментом 70–90 $\text{H}\cdot\text{m}$ (7–9 кгс·м). Для обеспечения установки скобы можно снять соединительную шину.

Для стартеров с фланцевым креплением затяжку трех болтов M12 производить моментом $98,06...122,58 (10...12,5 \ krc·m)$.

ОБСЛУЖИВАНИЕ ЭЛЕКТРОФАКЕЛЬНОГО УСТРОЙСТВА

Техническое обслуживание ЭФУ проводить при подготовке двигателя к зимней эксплуатации в связи с переводом двигателя с летних сортов топлива на зимние, а также с необходимостью проверки технических параметров основных изделий ЭФУ: факельной штифтовой свечи и электромагнитного клапана.

- 1. ЭФУ снять с двигателя.
- 2. Параметры для проверки факельной штифтовой свечи:
- При номинальном напряжении 19 В, ток через минуту после включения должен быть 11,0-11,8 А.
- Пропускная способность жиклера свечи должна быть 440 см³/мин при давлении подаваемого воздуха 145 кПа (1,5 кгс/см²) и температуре 20°±5°С.
- 3. Параметры для проверки электромагнитного клапана:
- При номинальном напряжении 24 В потребляемая мощность не более 48 Вт;
- Напряжение срабатывания (открытия) клапана 9-15 В;
- Напряжение отпускания (закрытия) клапана не более 6 В;
- Ток, потребляемый обмоткой электромагнита, при напряжении срабатывания 12В и температуре окружающего воздуха 20°С должен быть 0,8-1,1 А;
- Пропускная способность клапана не менее 3,5 л/час. Клапан должен быть герметичным при давлении воздуха 150 кПа (1,5 кгс/см²).
- 4. Топливные трубки в системе продуть сжатым воздухом под давлением 97 кПа (1 кгс/см²). В обоих направлениях воздух должен проходить свободно. Кроме того, трубки проверить на герметичность воздухом под давлением 485 кПа (5 кгс/см²). Внутренняя полость трубок должна быть чистой.

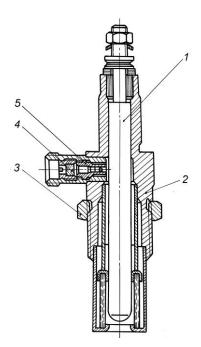


Рис. 88. Факельная штифтовая свеча:

- 1 накальный штифт; 2 корпус свечи в сборе; 3 контргайка; 4 фильтр; 5 дозирующая вставка.
- 5. Если при проверке изделия укладываются в требования ТУ, то они должны быть вновь установлены на двигатель. При наличии отклонений по электрическому сопротивлению свечи произвести ее замену. В случае уменьшения пропускной способности свечи вывернуть фильтр 4 (рис. 88), вынуть дозирующую вставку 5, промыть их в неэтилированном бензине или
- этиловом спирте и продуть сжатым воздухом. Затем установить и вновь проверить пропускную способность свечи.

 6. Установить изделия ЭФУ на двигатель. При установке
- 6. Установить изделия ЭФУ на двигатель. При установке подключение топливопровода от ТНВД к электромагнитному клапану производить с учетом направления стрелки, выбитой на корпусе клапана.

Факельную штифтовую свечу при установке законтрить контргайкой. Тщательно закрепить электромагнитный клапан и надежно подтянуть соединения топливопроводов. Проверить и при необходимости затянуть все соединения электропитания ЭФУ, проверить надежность штекерных соединений.

- 7. После установки ЭФУ на автомобиль прокачать топливную систему ЭФУ и проверить ее герметичность, для чего при работающем двигателе нажать кнопку включения ЭФУ и удерживать ее в течение 30 секунд после загорания контрольной лампочки. Подтекание топлива в соединениях системы не допускается.
- 8. Проверить исправность электросхемы ЭФУ. Проверка исправности электрической цепи включает в себя проверку предварительного разогрева свечей, нагрева свечи через сопротивление при сопровождении работы двигателя работой ЭФУ. Предварительный нагрев свечей оценивать по силе тока, потребляемого свечей, и по величине напряжения, подводимого к свечи. Сила тока, потребляемая свечей, составляет около 23 А, напряжение около 19 В.

Убедиться в автоматическом отключении генераторной установки во время работы ЭФУ. Если ток, потребляемый свечей, и напряжение, подводимое к свече, имеют те же значения, что и в период предварительного нагрева, значит автоматическое отключение генераторной установки работает исправно.

ВНИМАНИЕ! ПРИ ВОЗНИКНОВЕНИИ НЕОБХОДИМОСТИ ЗАМЕНЫ ОДНОЙ СВЕЧИ ЗАМЕНЯТЬ ОБЕ ОДНОВРЕМЕННО

ТЕКУЩИЙ РЕМОНТ ДВИГАТЕЛЕЙ

ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ ДВИГАТЕЛЯ И СПОСОБЫ ИХ УСТРАНЕНИЯ

Причина неисправности

Способ устранения

ДВИГАТЕЛЬ НЕ ПУСКАЕТСЯ

Прежде чем искать причины затрудненного пуска двигателя, проверить, есть ли топливо в баке и открыт ли кран всасывающего топливопровода

Стартер не проворачивает коленчатый вал или вращает его очень медленно Проверить степень зарядки и исправность аккумуляторных батарей и, если необходимо, зарядить или заменить их

Проверить контакты в цепи питания стартера, при необходимости очистить и затянуть клеммы проводов.

Проверить состояние контактов реле стартера, при наличии подгара зачистить контакты

Проверить контакты щеток стартера с коллектором и отсутствие заедания щеток в щеткодержателях, если необходимо, протереть и зачистить коллектор, очистить боковые грани щеток, заменить изношенные щетки новыми или заменить неисправные щеточные пружины.

			
Причина неисправности	Способ устранения		
	Если невозможно устранить дефекты, заменить стартер.		
Засорены топливопроводы или заборник в топливном баке	Промыть заборник, промыть и продуть топливопроводы		
Замерзание воды в топливопроводах или на сетке заборника топливного бака	Осторожно прогреть топливные трубки, фильтры и бак		
Загустение топлива в топливопроводах	Заменить топливо другим, соответствующим сезону и прокачать систему		
Засорение фильтрующих элементов топливных фильтров	Заменить фильтрующие элементы		
Неправильный угол опережения впрыски- вания топлива	Отрегулировать угол опережения впрыскивания топлива		
Наличие воздуха в топливной системе	Прокачать систему, устранить негерметичность		
Не работает топливо- подкачивающий насос	Разобрать насос и устранить неисправности		
Заедание рейки топливного насоса высокого давления в нулевой подаче	Отремонтировать топливный насос в мастерской или заменить исправным		
Затрудненное перемещение рейки ТНВД из-за загустевания смазки	Осторожно прогреть топливный насос		
Негерметичен перепуск- ной клапан ТНВД	Промыть или заменить клапан		
ДВИГАТЕЛЬ НЕ РАЗВИВАЕТ МОЩНОСТИ			
Zarngananna paanymun iy	Опистить позначница филитри		

Загрязнение фильтров	воздушных	Очистить воздушные фильтры
Засорение тракта	выпускного	Прочистить выпускной тракт

Причина неисправности	Способ устранения
Загрязнение фильтрующих элементов топливных фильтров	Заменить фильтрующие элементы
Рычаг управления регулятором не доходит до болта максимальных оборотов. Рычаг останова не доходит до крайнего рабочего положения	Проверить и отрегулировать систему рычагов привода
Наличие воздуха в топливной системе	Прокачать систему питания топливом и устранить
Неправильный угол опережения впрыски- вания топлива	Отрегулировать угол опережения впрыскивания топлива
Неплотность прилегания клапанов газораспределения	Отрегулировать тепловые зазоры в клапанном механизме, при необходимости притереть клапаны
Низкое давление нагнетаемого воздуха	Негерметична система подачи воздуха. Устранить негерметичность.
	При повышенном сопротивлении выпускного трубопровода очистить выпускной трубопровод.
	Неисправен турбокомпрессор. Сдать в ремонт
Нарушение регулировки или засорение форсунок	Отрегулировать форсунки и, если необходимо, промыть и прочистить их
Неисправность клапанов топливоподкачивающего насоса	Промыть гнезда и клапаны насоса, при необходимости притереть клапана
Поломка пружин толкателей топливного насоса высокого давления	Заменить пружины и отрегу- лировать насос на стенде в специальной мастерской

Причина неисправности	Способ устранения
Поломка пружин или негерметичность нагнетательных клапанов топливного насоса	Заменить пружину или устранить негерметичность клапана (проводить в специальной мастерской)
Износ поршневых колец	Заменить поршневые кольца, при необходимости, поршни и гильзы цилиндров

ДВИГАТЕЛЬ СТУЧИТ

Ранний впрыск топлива в цилиндры	Отрегулировать угол опережения впрыскивания топлива
	Отрегулировать тепловые зазоры в клапанном механизме

НЕРАВНОМЕРНАЯ РАБОТА ДВИГАТЕЛЯ

Ослаблено крепление или лопнула трубка высокого давления	Подтянуть крепление или заменить трубку		
Нарушена равномерность подачи топлива секциями насоса высокого давления	Отрегулировать подачу на специальном стенде		
Неудовлетворительная работа отдельных форсунок	Снять форсунки и проверить в мастерской, при необходимости, отремонтировать или заменить неисправные форсунки		
Неисправность регулятора числа оборотов	Устраняется в специальной мастерской		

ПОНИЖЕННОЕ ДАВЛЕНИЕ МАСЛА В СИСТЕМЕ СМАЗКИ

Прежде, чем искать причину неисправности, убедитесь в наличии достаточного количества масла в поддоне

Загрязнение фильтрую-	Сменить фильтрующие элементы
щего элемента масля-	масляного фильтра
ного фильтра (загорание	
лампочки)	

Причина неисправности	Способ устранения			
Неисправен манометр	Заменить манометр исправным			
Засорение заборника масляного насоса	Снять поддон, промыть заборник			
Засорение или неисправность редукционного или дифференциального клапанов масляного насоса	Разобрать, промыть и собрать клапан. При поломке пружины заменить ее и отрегулировать клапан на стенде			
Негерметичность соединений маслопроводов	Проверить соединения и прокладки фильтров и трубок. Если необходимо, подтянуть соединения или заменить прокладки			
Разжижение масла вследствие попадания топлива	Проверить герметичность соединений дренажного трубопровода, трубок высокого давления форсунки под крышками головок цилиндров и устранить течь			
Увеличение зазоров в коренных и шатунных подшипниках коленчатого вала в результате износа или разрушения вкладышей	Заменить вкладыш подшипников коленчатого вала, при необходимости прошлифовать шейки вала			

ПОВЫШЕННАЯ ТЕМПЕРАТУРА ЖИДКОСТИ В СИСТЕМЕ ОХЛАЖДЕНИЯ

Прежде, чем искать причину неисправности, убедиться в наличии достаточного количества охлаждающей жидкости

Ослабление натяжения ремня привода водяного насоса	Отрегулировать натяжение ремня
Износ ремня водяного насоса	Заменить ремень
Нарушение герметичности жидкостного тракта системы охлаждения	Устранить неисправность

Причина неисправности	Способ устранения
Разрыв прокладки пробки радиатора	Заменить прокладку
Неисправны термостаты	Заменить термостаты
Загрязнение радиатора	Очистить радиатор
Не включается вентилятор	Проверить положение рычага включения вентилятора и установить его в положение «В». Если вентилятор не включился неисправен включатель.
Неисправен включатель муфты вентилятора	Заменить термосиловой датчик TC-103 (см. рис. 44, поз. 12)
Не выключается вентилятор	Установить выключатель в положение «О». Если вентилятор не выключился закоксованы дренажные отверстия в приводе вентилятора. Отремонтировать или заменить привод.

В СИСТЕМУ СМАЗКИ ПОПАДАЕТ ВОДА

Подтекание по резиновым кольцам гильз цилиндров	Заменить неисправные уплотнительные кольца
Разрушение уплотнительной прокладки головки цилиндров	Заменить неисправную прокладку
Нарушение герметичности жидкостно-масляного теплообменника	Снять теплообменник с двигателя и устранить подтекание
Нарушение герметичности уплотнительной прокладки головки цилиндров пневмокомпрессора	Заменить прокладку

ПОСТОРОННИЕ ШУМЫ В ТУРБОКОМПРЕССОРЕ

Задевание	ротора	за	Снять	турбокомпрессор	для
неподвижные детали		ремонта	или замены		

УКАЗАТЕЛЬ ТОКА ПОКАЗЫВАЕТ РАЗРЯДНЫЙ ТОК ПРИ НОМИНАЛЬНОЙ ЧАСТОТЕ ВРАЩЕНИЯ КОЛЕНЧАТОГО ВАЛА ДВИГАТЕЛЯ

Проскальзывание приводных ремней

Неисправность в проводке или контактных присоединениях к генератору и регулятору

Щетки заедают щеткодержателе

Загрязнены или замаслены контактные кольца генератора

Щетки изношены

Отпайка проводов от колец или обрыв катушки возбуждения

Неисправность (пробой или обрыв) диодов выпрямительного блока

Неисправен регулятор напряжения

Неисправна аккумуляторная батарея

Обрыв или короткое замыкание в обмотке статора

Натянуть ремни, убедившись в исправности шарикоподшипников Устранить неисправность

Отвернуть винты щеткодержателя и очистить щетки и щеткодержатель

Протереть кольца тряпкой, смоченной в бензине, если удалить загрязнение не удается - зачистить мелкозернистой наждачной бумагой и вторично протереть

Заменить шетки

Припаять провод, при обрыве - заменить ротор

Проверить и при необходимости заменить выпрямительный блок

Заменить регулятор напряжения

Проверить и в случае необходимости заменить аккумуляторную батарею

Проверить обмотки статора. При обрыве или замыкании заменить статор

Способ устранения

ЧРЕЗМЕРНО БОЛЬШОЙ ЗАРЯДНЫЙ ТОК (АМПЕРМЕТР ЗАШКАЛИВАЕТ)

Неисправен регулятор напряжения

Заменить регулятор напряжения

Замыкание клеммы «Ш» (шунтового провода) генератора или регулятора на массу

Устранить замыкание

ШУМ ИЛИ СТУК В ГЕНЕРАТОРЕ

Изношены или разрушены детали подшипника

Заменить дефектный подшипник

Наличие в генераторе постороннего предмета

Удалить посторонний предмет

Погнут вентилятор

Выправить погнутые места вентилятора

Чрезмерное натяжение или износ приводных ремней

Отрегулировать натяжение ремней и устранить перекос

ПОДШИПНИКИ ГЕНЕРАТОРА ПЕРЕГРЕВАЮТСЯ

Чрезмерное натяжение приводных ремней

Ослабить натяжение ремней

ПРИ ВКЛЮЧЕНИИ СТАРТЕР МЕДЛЕННО ПРОВОРАЧИВАЕТ КОЛЕНЧАТЫЙ ВАЛ

Разряжена или неисправна аккумуляторная батарея Зарядить или сменить аккумуляторную батарею

Зависание щеток, подгар коллектора

Провести профилактику щеточно-коллекторного узла

Причина неисправности

Способ устранения

СТАРТЕР НЕ РАБОТАЕТ (ПРИ ЕГО ВКЛЮЧЕНИИ СВЕТ ФАР НЕ СЛАБЕЕТ)

Отсутствие контакта щеток с коллектором

Протереть коллектор тряпкой, смоченной в бензине или очистить коллектор стеклянной шкуркой. Очистить боковые грани щеток или заменить щетки новыми. Проверить состояние щеточных пружин и в случае их неисправности - заменить. Проверить нет ли заедания щеток в щеткодержателях

Обрыв цепи питания или неисправность в проводке

Проверить цепь стартера и устранить неисправность

РЕЛЕ РАБОТАЕТ С ПЕРЕБОЯМИ (ВКЛЮЧАЕТ СТАРТЕР И СЕЙЧАС ЖЕ ВЫКЛЮЧАЕТ)

Разряжена аккумуляторная батарея

Обрыв удерживающей обмотки реле

Зарядить или заменить аккумуляторную батарею Заменить реле

ПРИ ВКЛЮЧЕНИИ СТАРТЕРА СЛЫШЕН ХАРАКТЕРНЫЙ СКРЕЖЕТ МЕТАЛЛА

Забиты зубья шестерни стартера или венца маховика и шестерня не входит в зацепление

Ослабло крепление стартера к двигателю

Нарушена регулировка реле

Заменить неисправные детали

Подтянуть болты крепления стартера

Отрегулировать реле стартера

СТАРТЕР РАБОТАЕТ, НО НЕ ПРОВОРАЧИВАЕТ КОЛЕНЧАТЫЙ ВАЛ ДВИГАТЕЛЯ

Поломка зубьев шестерни стартера или венца маховика

Заменить неисправные детали

Причина неисправности	Способ устранения
Вышел из строя привод	Заменить привод

ПРИ ВКЛЮЧЕНИИ ЭФУ НА РЕЖИМ ПРЕДВАРИТЕЛЬНОГО ПРОГРЕВА СТРЕЛКА АМПЕРМЕТРА НА ЩИТКЕ ПРИБОРОВ НЕ ОТКЛОНЯЕТСЯ

Разрыв электрической цепи питания факельных штифтовых свечей из-за отсутствия контакта в проводах или перегорания спиралей обеих свечей

Включить ЭФУ на режим работы предварительного прогрева, проверить наличие напряжения между клеммой свечи и массой. При наличии напряжения заменить свечи. При отсутствии напряжения проверить всю цепь и подтянуть контакты проводов

ПРИ ВКЛЮЧЕНИИ ЭФУ НА РЕЖИМ ПРЕДВАРИТЕЛЬНОГО ПРОГРЕВА СТРЕЛКА АМПЕРМЕТРА НА ЩИТКЕ ПРИБОРОВ ПОКАЗЫВАЕТ ПОЧТИ ВДВОЕ МЕНЬШИЙ ТОК РАЗРЯДА ПО СРАВНЕНИЮ С НОРМАЛЬНОЙ РАБОТОЙ ЭФУ

Перегорание спирали накального элемента в одной из факельных штифтовых свечей

Проверить сопротивление факельных штифтовых свечей. При обнаружении неисправной свечи заменить обе свечи

ПРИ ВКЛЮЧЕНИИ ЭФУ НА РЕЖИМ ПРЕДВАРИТЕЛЬНОГО ПРОГРЕВА СТРЕЛКА АМПЕРМЕТРА НА ЩИТКЕ ПРИБОРОВ УКАЗЫВАЕТ БОЛЬШОЙ ТОК РАЗРЯДА ПО СРАВНЕНИЮ С НОРМАЛЬНОЙ РАБОТОЙ ЭФУ

Замыкание спирали накального элемента факельной штифтовой свечи на штифт

Проверить сопротивление факельных штифтовых свечей. При обнаружении неисправной свечи заменить ее

ПРИ ПРОВЕРКЕ РАБОТЫ ЭФУ ОТСУТСТВУЕТ ФАКЕЛ ВО ВПУСКНОМ ТРУБОПРОВОДЕ ДВИГАТЕЛЯ

Недостаточная частота вращения двигателя (менее 50 об/мин) из-за низкой температуры масла в двигателе или низкой температуры электролита аккумуляторных батарей, а также большой степени их разряда

Неисправность электрической цепи

Неисправность в системе питания топливом

Проверить частоту вращения двигателя. При скорости менее 50 об/мин заменить аккумуляторные батареи или прогреть двигатель предпусковым подогревателем

Проверить электрическую схему ЭФУ и устранить неисправность

Проверить герметичность топливной системы двигателя отсечке топлива путем прокачки ручным подкачивающим насосом или проверкой герметичности системы с полключением манометра. После прокачки давления открытия перепускного клапана на ТНВД и двухминутной выдержки давление в системе не должно быть ниже 0.1 кгс/см^2 . Если давление ниже, проверить работоспособность клапанов на ФТОТ и ТНВД

ОСОБЕННОСТИ РАЗБОРКИ И СБОРКИ ДВИГАТЕЛЯ

ДЕМОНТАЖ И МОНТАЖ ГОЛОВКИ ЦИЛИНДРОВ

Головку цилиндров снимать только для устранения неисправностей деталей цилиндро-поршневой группы, прокладки головки цилиндров, клапанов или для замены самой головки.

Снимать головку цилиндров в следующем порядке:

- Слить охлаждающую жидкость из системы охлаждения лвигателя.
- 2. Отсоединить от головки все трубопроводы, защитить их внутренние полости от попадания пыли и грязи.
- 3. Снять крышку головки цилиндров.
- 4. Отвернуть гайки скоб крепления форсунок (рис. 89), снять форсунки (рис. 90), предохраняя распылитель от ударов и засорения отверстий.
- 5. Отвернуть гайки крепления осей коромысел, снять оси коромысел в сборе с коромыслами и извлечь штанги.

Рис. 89.Отвертывание гайки скобы крепления форсунки

Рис. 90. Снятие форсунки

6. Отвернуть гайки шпилек крепления головки цилиндров (рис. 91), соблюдая последовательность, обратную затяжке (рис. 60), не менее чем за три приема:

I прием - до 147...118 H·м (15...12 кгс·м)

II прием - до 49...39 Н·м (5...4 кгс·м)

III прием - вывернуть гайки.

- 7. Снять головку цилиндров с двигателя и осмотреть ее состояние.
- 8. Если необходимо, осторожно снять прокладку головки цилиндров.
- 9. Проверить состояние гильз цилиндров и закрыть цилиндровые отверстия, чтобы предохранить их от попадания пыли и грязи.

Установку головки цилиндров на двигатель производить в обратном порядке. Перед установкой протереть чистой ветошью привалочные плоскости блока цилиндров, бурта гильзы цилиндров и головку цилиндров. Повторное использование прокладки головки цилиндров допускается с той же головкой цилиндров только при неизменном положении гильз в блоке цилиндров и при отсутствии следов прорыва газов и разрушения окантовок газового стыка. Обратить внимание на правильность установки прокладки головки цилиндров на штифты и окантовок прокладок – на бурты гильз цилиндров.

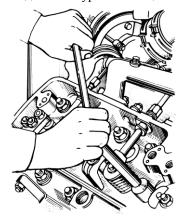


Рис. 91. Отвертывание гаек крепления головки цилиндров

Гайки шпилек крепления головок цилиндров затягивать в порядке возрастания номеров, как показано на рис. 60, моментом 240 - 260 Н-м (24 -26 кгс м). После первой затяжки повторной операцией проверить требуемый крутящий момент на каждой гайке, соблюдая указанную последовательность. Нельзя затягивать гайки моментом большим, чем указано, как это неизбежно приведет разрушению деталей газового стыка.

ПРИТИРКА КЛАПАНОВ

Перед разборкой головок цилиндров очистить их от масла и нагара и пометить порядковые номера клапанов на их тарелках для того, чтобы при сборке установить их на свои места.

рассухаривания клапанов необходимо цилиндров без форсунок, коромысел, осей коромысел и шпилек осей коромысел установить привалочной поверхностью на плиту так, чтобы обеспечить упор для клапанов. Рассухаривание выполнять c помощью приспособления, изображенного на рис. 92. Для этой цели ввернуть упорный болт 1 приспособления в отверстие под шпильку крепления оси коромысла, нажимную тарелку 2 приспособления установить на тарелку пружин соответствующего клапана и, нажимая на рукоятку 3 рычага приспособления, отжать пружины клапана, вынуть сухари и снять все детали клапанного узла. Таким же путем последовательно рассухарить все остальные клапаны и снять пружины клапанов и сопряженные с ними детали.

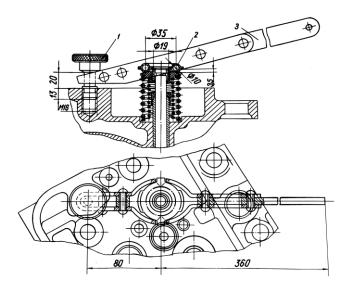


Рис. 92. Приспособление для снятия и установки клапанов газораспределения:

1 – упорный болт; 2 – нажимная тарелка; 3 – рукоятка

Повернуть головку цилиндров и вынуть клапаны из направляющих втулок. Клапаны и седла тщательно очистить от грязи, нагара и масляных отложений, промыть в керосине или специальном моющем растворе, высушить и осмотреть для определения степени ремонта. Восстановить герметичность клапана притиркой возможно только при наличии незначительных износов и мелких раковин на рабочей фаске и лишь в том случае; если тарелка и стержень не покороблены и нет местных прогаров на фасках клапана и седла.

При наличии таких дефектов притирке должны предшествовать шлифовка седел и клапанов или замена неисправных деталей новыми.

Для притирки клапанов использовать специальную притирочную пасту, приготовленную путем тщательного перемешивания трех частей (по объему) микропорошка зеленого карбида кремния с двумя частями моторного масла и одной частью дизельного топлива. Перед употреблением притирочную перемешать, так при отсутствии смесь тщательно как механического перемешивания микропорошок способен осаждаться.

Установить головку цилиндров на плиту или специальное приспособление привалочной поверхностью кверху. Нанести на фаску клапана тонкий равномерный слой притирочной пасты, смазать стержень клапана чистым моторным маслом и установить его в головку цилиндров. Допускается наносить пасту на фаску седла. Притирку выполнять возвратно-вращательными движениями клапанов при помощи специального приспособления или дрели с присосом. Нажимая на клапан с усилием 20...30 Н (2...3 кгс), повернуть его на 1/3 оборота в одном направлении, затем, ослабив усилие, на 1/4 оборота в обратном направлении. Нельзя выполнять притирку круговыми движениями.

Периодически поднимая клапан и добавляя на фаску пасту, продолжать притирку, как указано выше, до тех пор, пока на фасках клапана и седла не появится непрерывный матовый поясок шириной «А» не менее 1,5 мм (рис. 93). Разрывы матового пояска и наличие на нем поперечных рисок не допускается. При правильной притирке матовый поясок «А» на фаске клапана седле должен начинаться у большего основания конуса, как показано на рисунке 93.

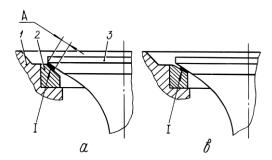


Рис. 93. Расположение матового пояска на фаске клапана:

а – правнльное; в – неправильное; 1 – головка цилиндров; 2 – седло; 3 – клапан

После окончания притирки клапаны и головку цилиндров тщательно промыть керосином или специальным моющим раствором и высушить.

ВНИМАНИЕ! НАЛИЧИЕ ДАЖЕ НЕЗНАЧИТЕЛЬНЫХ ОСТАТКОВ ПРИТИРОЧНОЙ ПАСТЫ НА КЛАПАНЕ ИЛИ ГОЛОВКЕ ЦИЛИНДРОВ МОГУТ ПРИВЕСТИ К НАТИРУ И УСКОРЕННОМУ ИЗНОСУ ГИЛЬЗ ЦИЛИНДРОВ И ПОРШНЕВЫХ КОЛЕЦ.

Клапаны, пружины и детали их крепления установить на головку цилиндров и засухарить клапаны, используя приспособление, изображенное на рис. 91.

Качество притирки проверить на герметичность сопряжений клапан-седло путем заливки керосина или дизельного топлива, заливая его поочередно во впускные и выпускные окна. Хорошо притертые клапаны не должны пропускать керосин или дизельное топливо в течение одной минуты.

Допустима проверка качества притирки карандашом. Для этого поперек фаски притертого чистого клапана мягким графитовым карандашом нанести через равные промежутки 10 -15 черточек, после чего осторожно вставить клапан в седло и, сильно нажимая к седлу, повернуть его на 1/4 оборота. При хорошем качестве притирки все черточки на рабочей фаске клапана должны стереться. При неудовлетворительных проверки качества притирки ее необходимо результатах продолжить.

ЗАМЕНА ПОРШНЕВЫХ КОЛЕЦ

Для замены поршневых колец предварительно демонтировать поршень с шатуном при снятых головке цилиндров и поддоне. Двигатели оборудованы масляным охлаждением поршней. При демонтаже поршневой группы на указанных двигателях предварительно снять форсунки охлаждения поршней во избежание их поломок. Для более легкого извлечения поршня очистить нагар с верхнего пояса гильзы. Отвернуть болты крепления крышки шатуна, снять крышку и извлечь через цилиндр поршень в сборе с шатуном. Для отсоединения шатуна от поршня вынуть стопорные кольца поршневого пальца, нагреть поршень в масляной ванне до 80°С и извлечь поршневой палец.

Для снятия поршневых колец надеть щипцы (рис. 94) на кольцо, ввести губки 2 щипцов в замок кольца и, сжав до упора рукоятки 3 щипцов, осторожно вывести кольцо из канавки и снять его с поршня (рис. 95).

Установку поршневых колец производить в обратном порядке.

Осторожно очистить поршень от нагара, предохраняя его от повреждений (особенно торцовые поверхности канавок под поршневые кольца).

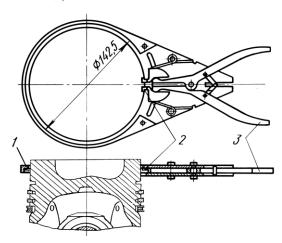


Рис. 94. Щипцы для снятия и надевания поршневых колец: 1 – поршневое кольцо; 2 – губки щипцов; 3 – рукоятка

Рис. 95. Снятие и надевание поршневых колец на поршень

Перед сборкой все детали тщательно промыть, а масляные каналы продуть сжатым воздухом. Сборку поршня с пальцем производить легким нажатием руки, при этом необходимо обильно смазать моторным маслом отверстие в поршне и палец. Не допускается запрессовка пальца в поршень.

Для того, чтобы установить в гильзу цилиндра поршень в сборе с поршневыми кольцами и шатуном, предварительно сжать кольца, утопив их в канавки поршня. Для сжатия колец применять оправку (рис. 96) c конической внутренней поверхностью И буртиком, позволяющим правильно сцентрировать оправку на гильзе цилиндра. Установив поршень в оправку, осадить его в гильзу цилиндра.

При сборке поршня с шатуном и установке их на двигатель выполнять следующие требования:

- Поршень и гильза должны быть одинаковых размерных групп.
- Компрессионные кольца устанавливать клеймом «верх» к днищу поршня.
- 3 Замки соседних поршневых колец развести в противоположные стороны в плоскость поршневого пальпа.
- 4 Установить поршень так, чтобы смещенная камера сгорания в поршне была направлена внутрь двигателя, в сторону топливного насоса.
- 5 Клейма спаренности на шатуне и крышке должны быть одинаковыми.

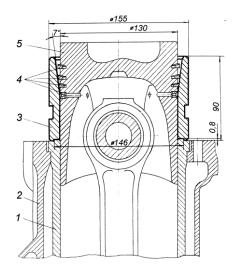


Рис. 96. Оправка для установки поршня в гильзу цилиндра:

1 — гильза цилиндра; 2 — блок цилиндров; 3 — обжимное приспособление; 4 — поршневые кольца; 5 — поршень

- 6 Грязь, заусеницы и забоины на шлицах шатуна и крышки не допускаются.
- 7 Резьбу и опорные торцы головок болтов крепления крышек шатунов смазать моторным маслом и затянуть в два приема, начиная с длинного болта, сначала моментом 100 Н·м (10 кгс·м), окончательно моментом 200 220 Н·м (20 22 кгс·м).

ОЧИСТКА ПОЛОСТЕЙ ШАТУННЫХ ШЕЕК

При каждом снятии коленчатого вала с двигателя для замены вкладышей очистить полости шатунных шеек, предварительно удалив заглушки 2 (рис. 97), которыми закрыты полости. Заглушки заменить новыми, их повторное использование не допускается.

Перед установкой заглушек запилить вспучивание металла у кромок отверстий от предыдущей раскерновки, промыть вал и продуть масляные каналы. Заглушки запрессовать на глубину 5–6 мм от кромки отверстия, после чего раскернить внутри отверстия в трех точках, равнорасположенных по окружности, для предотвращения самопроизвольного выпрессовывания заглушек.

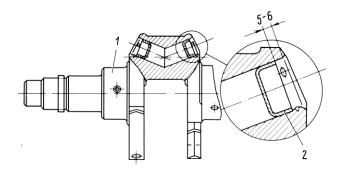


Рис. 97. Заглушки полостей шатунных шеек:

1 – коленчатый вал; 2 – заглушки

ОСНОВНЫЕ ТРЕБОВАНИЯ К ПЕРЕШЛИ-ФОВКЕ ШЕЕК КОЛЕНЧАТОГО ВАЛА

Шлифовку шеек коленчатого вала на ремонтные размеры производить в пределах предусмотренных размеров, при этом обеспечить выполнение следующих требований:

- 1 При перешлифовании шеек вала на ремонтные размеры обеспечить плавный радиус 6_{-0,5} мм перехода от шеек к щекам без подрезов, прижогов, грубых рисок; шероховатость поверхностей шеек не должна превышать 0,20 мкм, радиусов галтелей 0,32 мкм.
- 2 Величина радиусов осей всех кривошипов вала должна быть 70±0,12 мм.
- 3 Допуск параллельности осей средних коренных шеек относительно общей оси крайних коренных шеек не должен превышать 0,010 мм, допуск параллельности осей шатунных шеек относительно общей оси крайних коренных шеек должен быть не более 0,03 мм на длине 100 мм или 0,022 мм на длине шейки.
- 4 Овальность, конусность, вогнутость и бочкообразность коренных и шатунных шеек не допускаются более 0,005 мм.
- 5 Трещины на поверхности вала не допускаются. Отсутствие поверхностных дефектов проверить магнитным дефектоскопом с обязательным последующим размагничиванием.

УСТАНОВКА КОЛЕНЧАТОГО ВАЛА НА ДВИГАТЕЛЬ

При установке коленчатого вала на двигатель обеспечить соответствие размеров вкладышей подшипников размерам шеек вала (см. табл. стр. 26).

Перед установкой обеспечить чистоту наружных поверхностей и внутренних полостей коленчатого вала и других сопряженных поверхностей. Смазать шейки и рабочие поверхности чистым моторным маслом.

Для облегчения установки маховика в правильное положение относительно коленчатого вала на ступице маховика нанесена цифра «6», которую при сборке совместить с цифрой «2» на торце коленчатого вала.

Крышки коренных пошипников не взаимозаменяемы; при их установке следить, чтобы клеймо на крышке соответствовало клейму на блоке.

Затяжку крышек коренных подшипников начинать с вертикальных болтов и затягивать в два приема с крутящим моментом после повторной затяжки $430-470~\mathrm{H}\cdot\mathrm{m}$ ($43-47~\mathrm{krc}\cdot\mathrm{m}$), затем затянуть в два приема горизонтальные болты с окончательным моментом затяжки $90-120~\mathrm{H}\cdot\mathrm{m}$ ($9-12~\mathrm{krc}\cdot\mathrm{m}$).

Перед затяжкой заднего упорного коренного подшипника выровнять осевой зазор, для чего, слегка притянув болтами крышку подшипника, перемещать коленчатый вал назад-вперед в осевом направлении до упора при помощи ломика сначала назад, затем вперед, выравнивая положение крышки. Затянув болты, проверить щупом осевой зазор. Он должен быть одинаковым с обеих сторон крышки.

ЗАМЕНА ШЕСТЕРНИ КОЛЕНЧАТОГО ВАЛА

Шестерню коленчатого вала можно заменить без снятия коленчатого вала с двигателя. При снятых шкиве и передней крышке блока передний противовес и шестерню спрессовать с помощью съемника. Перед установкой шестерню и передний противовес нагреть до температуры 105–155°С и последовательно подпрессовывать их до упора с помощью специального приспособления.

РАЗБОРКА И СБОРКА НАСОСНОЙ СЕКЦИИ ТОПЛИВНОГО НАСОСА ВЫСОКОГО ДАВЛЕНИЯ

При ремонте принимать все меры предосторожности для предупреждения попадания пыли и грязи в насос.

Разборку насосной секции производить в указанном ниже порядке.

- 1 Снять боковую крышку и колпак рейки.
- 2 При помощи, специального рычага (рис. 98) сжать пружину толкателя и извлечь нижнюю тарелку толкателя (рис. 99).

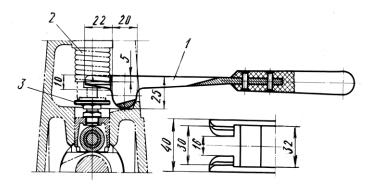


Рис. 98. Рычаг для снятия тарелки толкателя:

1 – рычаг; 2 – пружина толкателя; 3 – тарелка толкателя

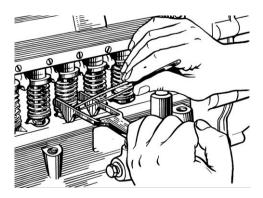


Рис. 99. Снятие тарелки толкателя

3 Снять контрящие сухари, вывернуть штуцеры и специальным съемником (рис. 100) извлечь из корпуса насоса седла вместе с нагнетательными клапанами. Для снятия навернуть оправку 2 съемника на резьбу седла 1 нагнетательного клапана до упора втулки 3 в корпус насоса. Поворачивая эксцентрик съемника вверх, извлечь седло нагнетательного клапана (рис. 101).

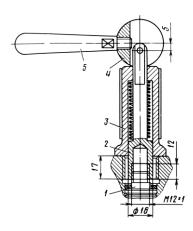


Рис. 100. Съемник седла нагнетательного клапана: 1 – седло нагнетательного клапана; 2 – оправка; 3 – втулка; 4 – эксцентрик; 5 – рукоятка

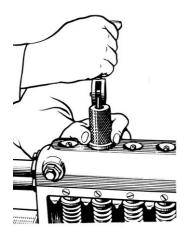


Рис. 101. Снятие седла нагнетательного клапана

- 4 Вывернуть стопорные винты втулки плунжера и вынуть плунжерные пары из корпуса насоса.
- 5 Слегка сжав, вынуть пружину из корпуса насоса вместе с верхней тарелкой, поворотной втулкой и зубчатым венцом.
- 6 Снять толкатель из направляющей в корпусе, Насосную секцию собирать в обратном порядке. При сборке обратить внимание на следующее:
- а) нагнетательный клапан с седлом, а также плунжерная пара являются прецизионными парами, и замену каждой из них можно производить только комплектом;
- б) поворотную втулку с зубчатым венцом в сборе устанавливать при среднем положении рейки (по отношению к корпусу насоса) так, чтобы прорезь венца находилась в плоскости оси отверстия под стопорный винт в корпусе насоса, а средний зуб венца в средней впадине на рейке (рис. 102);

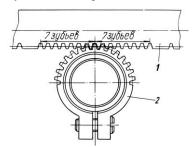


Рис. 102. Установка поворотной втулки с зубчатым венцом

- в) при установке плунжерной пары убедиться, что на втулку плунжера надето резиновое уплотнительное кольцо; лыска в нижней части хвостовика плунжера должна быть обращена в сторону стопорного винта втулки;
- б) после затяжки стопорного винта втулки плунжера проверить подвижность рейки и величину ее хода, который должен быть не менее 25 мм; рейка должна перемещаться легко, без ощутимых затруднений;
- д) штуцер затянуть моментом $100-120~{\rm H\cdot m}$ ($10-12~{\rm krc\cdot m}$), после затяжки каждого штуцера проверить перемещение рейки,

После сборки топливный насос с регулятором отрегулировать на стенде.

РАЗБОРКА И СБОРКА ВОДЯНОГО НАСОСА

Особенности разборки и сборки водяного насоса, устанавливаемого на двигатели ЯМЗ–236HE,HE2,БЕ,БЕ2.

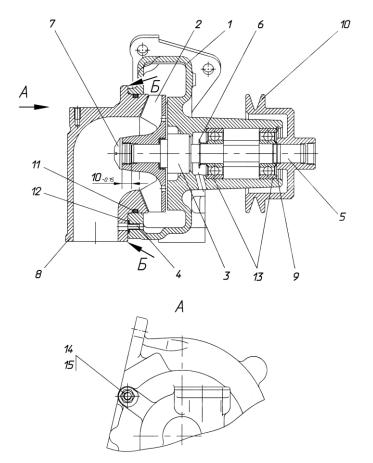


Рис. 103. Водяной насос:

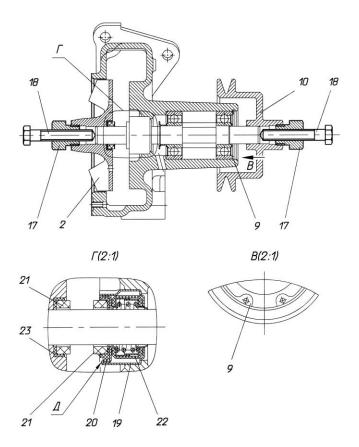
1-корпус; 2-крыльчатка; 3-торцовое уплотнение; 4-втулка; 5-вал; 6-водосбрасыватель; 7-заглушка; 8-подводящий патрубок; 9-стопорное кольцо; 10-шкив; 11, 12-уплотнительные кольца; 13-подшипники; 14, 15-гайки крепления и пружинные шайбы.

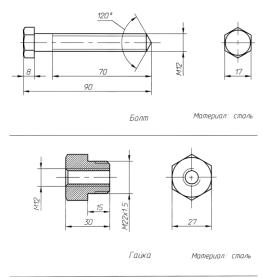
ПОРЯДОК СНЯТИЯ И РАЗБОРКИ ВОДЯНОГО НАСОСА

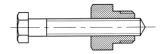
- 1 Ослабив крепление натяжного устройства ремня привода водяного насоса снять ремень со шкива водяного насоса.
- 1 Слить с двигателя и радиатора охлаждающую жидкость.
- 2 Снять подводящий патрубок с водяного насоса.
- 3 Отвернув крепление, снять с двигателя водяной насос, аккуратно не повредив прокладку.
- 4 Отвернуть гайки 14 (рис. 103) патрубка 8.
- 5 Слегка постукивая в выступающие части патрубка 8 в направлении стрелок Б, извлечь указанный патрубок из корпуса 1 насоса.
- 6 Зафиксировать крыльчатку 2 (или шкив 10) от вращения с валом 5.
- 7 Вывернуть заглушку 7 из резьбового отверстия крыльчатки 2.
- 8 Завернуть в резьбовое отверстие (M22x1,5) крыльчатки 2 гайку 17 съемника (рис. 104, 105) и, вворачивая болт 18, спрессовать крыльчатку 2 с вала 5.
- 9 Отогнуть «усы» Д корпуса 19 торцового уплотнения (рис. 104) и извлечь манжету 22 с пружиной и каркасами в сборе.
- 10 Используя съемник, спрессовать шкив 10.
- 11 Извлечь из канавки корпуса 1 насоса стопорное кольцо 9.
- 12 Выпрессовать из корпуса 1 вал 5 с водосбрасывателем 6 и подшипниками 13.
- 13 Если латунный корпус 23 торцового уплотнения не имеет повреждений, его из корпуса 1 можно не извлекать и на этом разборку насоса можно считать законченной.

ПОРЯДОК СБОРКИ ВОДЯНОГО НАСОСА

- 1 Промыть все детали насоса и просушить сжатым воздухом.
- 2 Напрессовать на вал 5 (рис. 103) подшипники 13 и водосбрасыватель 6. При этом необходимо:
 - предварительно смазать вал 5 дизельным маслом;
 - устанавливать подшипники 13 так, чтобы уплотнительные шайбы стояли с внешней стороны;
 - усилие напрессовки прилагать к внутреннему кольцу подшипника.




Рис. 104. Разборка водяного насоса:


2-крыльчатка; 9-стопорное кольцо; 10-шкив; 17-гайка съемника; 18-болт съемника; 19-корпус торцового уплотнения; 20-манжета втулки; 21-втулка уплотнения; 22-манжета с пружиной в сборе.

- 3 Заполнить всю полость между подшипниками смазкой Литол-24 (60...70 г).
- 4 Запрессовать вал в сборе с подшипниками и водосбрасывателем в корпус 1 до упора. При этом необходимо:
 - предварительно смазать расточку корпуса 1 под подшипники чистым моторным маслом;

- усилие запрессовки прилагать к наружному кольцу полшипника.
- 5 Установить в канавку корпуса 1 стопорное пружинное кольцо 9.
- 6 Напрессовать на вал 5 шкив 10 до упора. При этом необходимо:
 - предварительно смазать вал чистым моторным маслом;
 - обеспечить неподвижный упор противоположного конца вала.
- 7 Установить в латунный корпус 19 (рис. 104) детали торцового уплотнения;
 - резиновую манжету 22 в сборе с пружиной и каркасами пружины;
 - армированную манжету 20 и уплотнительную втулку 21.
- 8 Установить в крыльчатку 2 резиновую манжету 23 и уплотнительную втулку 21. При этом необходимо:
 - предварительно одеть манжету 23 на уплотнительную втулку 21;
 - нанести тонкий слой смазки в расточку крыльчатки 2 и на наружную поверхность резиновой манжеты 23;
 - взять двумя руками манжету в сборе со втулкой и, прилагая усилие к торцу уплотнительной втулки, вставить эти детали в расточку крыльчатки до упора, не допуская перекосов.
- 9 Напрессовать крыльчатку 2 в сборе с манжетой и уплотнительной втулкой на вал 5 (рис. 103). При этом необходимо:
 - предварительно смазать вал 5 чистым моторным маслом;
 - обеспечить неподвижный упор противоположного конца вала;
 - установить крыльчатку ив валу в размер $10_{-0.15}$ мм (рис. 103) между торцом вала и торцом ступицы крыльчатки. Для этого необходимо при запрессовке установить на торец вала диск диаметром не более 13 мм и высотой $10_{-0.15}$ мм.
- 10 Зафиксировать крыльчатку 2 (или шкив 10) от вращения.
- 11 Завернуть в резьбовое отверстие крыльчатки 2 заглушку 7 до упора;

- 12 Установить в корпус 1 втулку 4 и резиновое кольцо 12.
- 13 Установить в канавку патрубка 3 резиновое кольцо 11, не допуская его перекручивания.
- 14 Запрессовать патрубок 3 в расточку корпуса 1 до упора. При этом необходимо:
 - предварительно смазать расточку в корпусе 1 и кольцо 11 тонким слоем смазки Литол-24;
 - шпильки на корпусе 1 должны свободно войти в крепежные отверстия патрубка 8.
- 15 Закрепить патрубок 3 гайками 14 с пружинными шайбами 15.
- 16 Проверить качество сборки вращая вал 5 за шкив 10. Вращение вала должно быть свободным, без заеданий.

Приспособление в сборе

Рис. 105. Съемник

СЦЕПЛЕНИЕ

ВВЕДЕНИЕ

Силовой агрегат, в зависимости от модели и комплектации (см. раздел «Комплектация»), может комплектоваться сцеплением нескольких моделей.

Сцепление предназначено для:

- плавного трогания с места транспортного средства за счет обеспечения постепенного наращивания нажимного усилия на поверхности трения сцепления при отпускании педали привода сцепления водителем;
- надежной передачи крутящего момента двигателя к трансмиссии (без пробуксовки) при полностью включенном сцеплении;
- кратковременного разъединения двигателя от трансмиссии в момент переключения передач и в других необходимых случаях.

ВНИМАНИЕ! СВЕДЕНИЯ, НЕОБХОДИМЫЕ ДЛЯ ЭКСПЛУАТАЦИИ ПРИВОДА ВЫКЛЮЧЕНИЯ СЦЕПЛЕНИЯ, ПРИВОДЯТСЯ В РУКОВОДСТВЕ ПО ЭКСПЛУАТАЦИИ ТРАНСПОРТНОГО СРЕДСТВА.

ТРЕБОВАНИЯ БЕЗОПАСНОСТИ И ПРЕДУПРЕЖДЕНИЯ

Основным условием надежной работы сцепления на транспортном средстве является знание особенностей устройства сцепления и его привода, а также строгое выполнение указаний по их эксплуатации и уходу за ними. Исходя из этого, прежде чем приступить к эксплуатации транспортного средства, внимательно изучите, наряду с другими узлами и агрегатами, устройство сцепления, а также указания по эксплуатации и уходу, содержащиеся в данном руководстве.

При эксплуатации транспортного средства особое внимание уделять следующему:

- не допускать эксплуатации с неисправным сцеплением и приводом выключения сцепления;
- не открывать люки картера сцепления при работающем двигателе;
- при установке нажимного диска с кожухом на маховик двигателя, обеспечивать надежную затяжку болтов крепления кожуха к маховику;
- выполнять другие правила эксплуатации сцепления.

ЭКСПЛУАТАЦИЯ СЦЕПЛЕНИЯ

Долговечность и надежность сцепления при работе транспортного средства зависит от нагрузок, действующих на детали сцепления, которые в свою очередь определяются спецификой использования сцепления в процессе эксплуатации. Для снижения работы трения (буксование) и нагрева деталей сцепления выполняйте следующие требования:

- при трогании с места использовать 1-ю передачу;
- отпускание педали сцепления осуществлять при минимально возможной частоте вращения коленчатого вала;
- выбирать оптимальный темп (скорость) отпускания педали сцепления таким образом, чтобы время трогания было возможно минимальным, а транспортное средство при этом начинало трогаться без "рывков" и "дерганий";
- при маневрировании транспортного средства (проезды узких мест, заезды на смотровые ямы, эстакады, в боксы и т.д.) не допускать регулирования скорости пробуксовкой сцепления (педаль привода сцепления частично выжата);
- выполнять в срок и в полном объеме требования по техническому обслуживанию сцепления;
- не допускать эксплуатации с неисправным приводом выключения сцепления, с наличием пробуксовки сцепления при полностью отпущенной педали, а также при наличии "ведения". Эксплуатация с пробуксовкой приводит к повышенному износу фрикционных накладок, появлению трещин на маховике и нажимном диске от повышенного нагрева. Эксплуатация с ведением приводит к затрудненному включению передач и износу деталей синхронизаторов коробки передач.

К одной из особенностей эксплуатации сцепления относится то, что появляющиеся его неисправности (пробуксовка, ведение, замедленное включение и др.) часто связаны с нарушением нормальной работы механизма выключения сцепления, поэтому периодически его проверяйте и своевременно проводите техническое обслуживание.

Проверку выключения сцепления осуществлять следующим образом:

- 1. Прогретый до рабочей температуры двигатель перевести на режим минимальных оборотов холостого хода; выключить сцепление.
 - 2. Через 20 секунд медленно включить задний ход.
- 3. Если при этом раздаётся скрежет в коробке передач, необходимо проверить работу сцепления и привода его выключения.

СЦЕПЛЕНИЕ ЯМЗ-182

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА

Параметры сцепления	ЯМЗ-182		
Модель	182		
Тип сцепления	сухое, фрикционное, однодисковое, с диафрагменной вытяжной пружиной и накладками на безасбестовой основе		
Крутящий момент двигателя, $H \cdot M$ (кгс·м):			
- минимальный	820 (84)		
- максимальный	1100 (112)		
Диск ведомый сцепления	с демпфером, пружинно- фрикционного типа, с упругим креплением одной из фрикционных накладок		
Размеры фрикционных накладок, мм:			
- наружный диаметр	430		
- внутренний диаметр	240		
- толщина	4,3		
Диаметр пояса нажимного диска $D_{\scriptscriptstyle H}$, мм	300		
Толщина нажимной пружины Т, мм	5		

Параметры сцепления	ЯМЗ-182
Шлицы ступицы ведомого диска:	
- число шлиц	10
- внутренний диаметр, мм	34
- наружный диаметр, мм	42
- ширина впадины, мм	6
Отход нажимного диска при выключении, не менее, мм	2,3
Ход муфты выключения сцепления, необходимый для выключения, мм:	
- минимальный	11
- максимальный	13
Подшипник муфты выключения	Шариковый радиальный 70-117
Усилие на муфте выключения	
сцепления, не более, кгс	560
Крутящий момент на валу вилки	
выключения сцепления, Н м, не более	600
Смазка подшипников муфты и опор вала	ШРУС - 4М
вилки выключения	или ШРУС - 4

УСТРОЙСТВО И РАБОТА СЦЕПЛЕНИЯ

Диафрагменное сцепление модели 182 (рис. 106) состоит из ведущих и ведомых частей, а также деталей механизма выключения сцепления, устанавливаемых в картер сцепления.

Ведущая часть сцепления — нажимной диск 2 с кожухом устанавливается на маховик двигателя и крепится болтами М10 (12 шт.) на диаметре 450 мм. Центрирование осуществляется по цилиндрической проточке диаметром 475 мм на маховике и кожухе сцепления. Нажимной диск соединен с кожухом при помощи 4-х пакетов пластин, обеспечивающих центрирование, осевое перемещение и передачу крутящего момента от кожуха к нажимному диску. Для исключения проворота диафрагменной пружины относительно кожуха и нажимного диска на последнем установлено 6 пар втулок со специальными скобами. Применение этих скоб позволяет сохранять постоянный контакт нажимного диска с пружиной и обеспечивать отход первого при выключении сцепления.

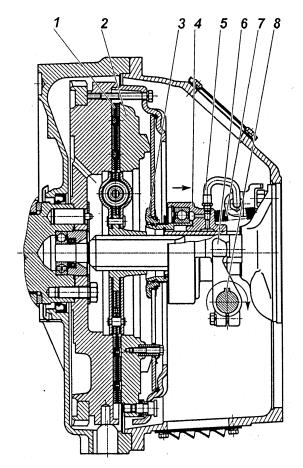


Рис. 106. Сцепление модели ЯМЗ-182:

1 - диск ведомый; 2 - диск нажимной; 3 - кольцо упорное; 4 - муфта выключения сцепления; 5 - шланг смазки; 6 - вилка выключения сцепления; 7 - оттяжная пружина; 8 - валик вилки выключения сцепления.

Ведомая часть - диск ведомый 1 устанавливается между маховиком и нажимным диском и центрируется по шлицам первичного вала коробки передач. В сцеплениях данного типа применен ведомый диск с демпфером пружинно-фрикционного типа с упругим креплением одной из фрикционных накладок.

Благодаря этому, сцепление снижает динамические нагрузки на трансмиссию при резких включениях (трогание с места, переключение передач), а также, исключает резонансные явления и снижает максимальные "пиковые" значения крутящего момента при установившемся движении транспортного средства. Крепление фрикционных накладок показано на рис. 107.

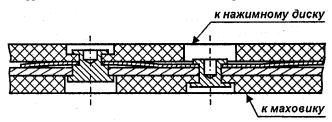


Рис. 107. Крепление фрикционных накладок.

Механизм выключения сцепления состоит из муфты 4 (рис. 106) с подшипником, вилки 6 и валика 8. Муфта соединена через упорное кольцо 3 с диафрагменной пружиной с помощью запорного устройства.

Оттяжная пружина 7 (рис. 106) исключает проворот и осевые перемещения втулки 7 (рис. 108) относительно упорного кольца 1 (рис. 108). По мере износа фрикционных накладок муфта выключения сцепления 4 (рис. 106) перемещается вместе с пружиной в сторону маховика, при этом конструкция привода выключения сцепления автомобиля или другого транспортного средства обеспечивает поворот вилки 6 (рис. 106) по часовой стрелке после выбора зазора между лапками вилки и муфтой за счет периодической регулировки привода или постепенный поворот за счет конструкции гидропривода.

Конструкция запорного устройства показана на рис.108. Она включает в себя упорное кольцо 1, втулку подшипника муфты 7 с фасонной канавкой, пружинное кольцо 2 круглого сечения, а также замковое кольцо 5. Упорное кольцо 1 устанавливается на диафрагменную пружину при сборке нажимного диска с кожухом и удерживается за счет пружинной шайбы 3 и стопорного кольца 4. На рисунке муфта заперта (соединена) с упорным кольцом. Внутри втулки подшипника муфты 7 установлено предохранительное кольцо 6, имеющее снаружи выступающий ус, препятствующий случайному рассоединению муфты выключения сцепления и упорного кольца 1.

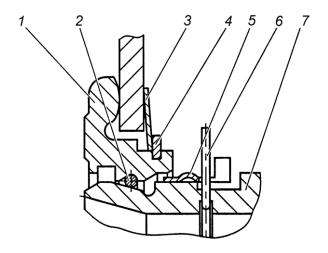


Рис. 108. Запорное устройство:

1 - кольцо упорное; 2 - кольцо пружинное; 3 - шайба пружинная; 4 - кольцо стопорное; 5 - кольцо замковое; 6 - кольцо предохранительное; 7 - втулка подшипника.

Выключение сцепления обеспечивается поворотом вала по часовой стрелке. Допустимое направление перемещения муфты и поворота вала для выключения сцепления показано на рис. 106 стрелками. Перемещение муфты и поворот вала в обратном направлении не допустимо.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Виды и периодичность технического обслуживания сцепления соответствуют видам и периодичности технического обслуживания двигателя.

Техническое обслуживание сцепления включает ежедневную проверку работы сцепления на транспортном средстве, а также, через одно TO-1 (через 500 часов) и при каждом TO-2 производить смазку муфты выключения сцепления с подшипником и валика вилки выключения сцепления.

Ежедневная проверка работы сцепления на транспортном средстве включает проверку на наличие пробуксовки, «ведения» и посторонних шумов и стуков.

Пробуксовка сцепления выявляется в процессе переключения передач, когда после отпускания педали сцепления и резкого увеличения частоты вращения коленчатого вала скорость транспортного средства не повышается.

"Ведение" сцепления (неполное выключение) имеет несколько характерных признаков:

- включение синхронизированных передач затруднено;
- включение несинхронизированных передач происходит с характерным скрежетом в коробке передач;
- транспортное средство с включенной низшей передачей и выжатой педалью привода сцепления движется.

ВНИМАНИЕ! С НАЛИЧИЕМ ПРОБУКСОВКИ СЦЕПЛЕНИЯ ПРИ ПОЛНОСТЬЮ ОТПУЩЕННОЙ ПЕДАЛИ, А ТАКЖЕ, ПРИ НАЛИЧИИ "ВЕДЕНИЯ" ЭКСПЛУАТАЦИЯ НЕ ДОПУСКАЕТСЯ.

Смазка в муфту подается через масленку шланга до появления смазки в зазоре между втулкой подшипника и отражательной шайбой. Смазка валика вилки выключения сцепления производится через две пресс-масленки, сделав шприцем по два хода.

Для обеспечения нормальной работы сцепления периодически контролировать правильность регулировки привода сцепления. Периодичность и порядок контроля и регулировки привода сцепления определяется руководством по эксплуатации транспортного средства.

УСТАНОВКА СЦЕПЛЕНИЯ НА ДВИГАТЕЛЬ

Установка сцепления на двигатель производится в следующем порядке:

- 1 С помощью специальной оправки установить на маховике ведомый диск, при этом фрикционная накладка, приклепанная к пружинной пластине, должна быть расположена к нажимному диску, а удлиненная часть ступицы наружу (от двигателя).
- Установить нажимной диск с кожухом в сборе, обеспечив соосность крепежных отверстий кожуха сцепления и маховика.

- 3 Завернуть вручную болты крепления сцепления на глубину не менее 4 мм.
- 4 Произвести затяжку болтов крепления сцепления с Мкр 60...70 Н·м в несколько приемов, равномерно подтягивая нажимной диск с кожухом к маховику, не допуская значительных перекосов нажимной (диафрагменной) пружины.
- 5 С помощью специальной оправки сцентрировать кольцо 3 (рис. 106) относительно оси коленчатого вала двигателя.

Конструкция запорного устройства механизма выключения сцепления требует выполнения особых правил установки коробки передач на двигатель. Основные положения запорного устройства показаны на рис. 109.

Установка коробки передач и введение муфты выключения сцепления в зацепление с упорным кольцом диафрагменной пружины производится в следующем порядке (рычаг расположен слева по двигателю):

- 1 Повернуть замковое кольцо 5 на муфте таким образом, чтобы его выступы не совпадали с пазами втулки подшипника муфты (положение "a").
- 2 Убедиться что муфта выключения сцепления отведена до упора в крышку подшипника первичного вала коробки передач пружиной 7 рис. 106.
- 3 Установить коробку передач и закрепить двумя болтами.

ВНИМАНИЕ! ПРИ УСТАНОВКЕ КОРОБКИ ПЕРЕДАЧ НЕ ДОПУСКАТЬ ПЕРЕМЕЩЕНИЯ МУФТЫ ВЫКЛЮЧЕНИЯ СЦЕПЛЕНИЯ В СТОРОНУ МАХОВИКА ПОСЛЕ ЕЕ СОЕДИНЕНИЯ С НАЖИМНОЙ ПРУЖИНОЙ.

- 4 Переместить муфту выключения сцепления к упорному кольцу до упора, для чего с помощью технологического рычага повернуть вал вилки выключения сцепления против часовой стрелки. Пружинное кольцо при этом попадает в фасонную канавку упорного кольца (положение "б", рис. 109).
- 5 Поворачивая вал вилки выключения сцепления по часовой стрелке, переместить муфту в направлении от двигателя (положение "в").

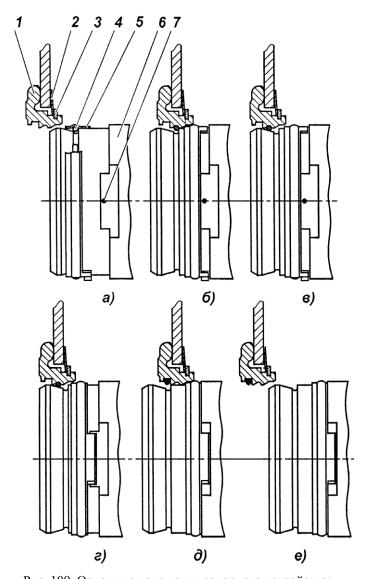


Рис. 109. Основные положения запорного устройства: 1 - кольцо упорное; 2 - шайба пружинная; 3 - кольцо стопорное; 4 - кольцо пружинное; 5 - кольцо замковое; 6 - втулка подшипника; 7 - кольцо предохранительное.

- 6 Убедиться, что муфта выключения сцепления введена в зацепление с упорным кольцом приложением к муфте дополнительного усилия в направлении от двигателя.
- 7 Окончательно закрепить коробку передач.

Проверка качества установки сцепления (отсутствие "ведения", контроль величины крутящего момента на валу вилки) осуществляется на неработающем двигателе. Для этого необходимо повернуть вал вилки на угол 9°30′...11° по часовой стрелке, что соответствует перемещению муфты на 11...13 мм от двигателя. При этом выходной вал коробки передач, при включенной передаче, должен вращаться при приложении крутящего момента не более 5 Н⋅м (0,5 кгс⋅м). Поворот вала вилки выключения сцепления по часовой стрелке показан на рис. 106.

СНЯТИЕ СЦЕПЛЕНИЯ С ДВИГАТЕЛЯ

Снятие сцепления с двигателя с установленной коробкой передач производится в следующем порядке:

- 1 Отвернуть гайку крепления шланга смазки.
- 2 Протолкнуть шланг смазки в полость картера сцепления.
- 3 Снять коробку передач, при этом муфта выключения сцепления останется на упорном кольце диафрагменной пружины.
- 4 Совместить полукруглый паз на муфте выключения сцепления в передней ее части с выступающим усом предохранительного кольца 6 (рис. 108) и, утопив его каким-либо предметом, удерживать в утопленном положении через центральное отверстие муфты выключения сцепления.
- 5 Повернуть замковое кольцо 5 (рис. 109) относительно втулки 6 так, чтобы выступы кольца совпали с пазами втулки (положение "г").
- 6 Протолкнуть муфту в сторону маховика до упора, при этом пружинное кольцо 4 выйдет из фасонной канавки упорного кольца и встанет в прямоугольную (положение "д").

- 7 Отсоединить муфту, для чего переместить ее в обратном направлении (от маховика), при этом пружинное кольцо останется в прямоугольной канавке упорного кольца (положение "e"), а затем из нее извлекается.
- 8 Снять нажимной диск с кожухом, для чего отвернуть болты крепления сцепления, постепенно в несколько приемов, не допуская значительных перекосов нажимной пружины.

ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ УСТРАНЕНИЯ

и способы устранения			
Причина неисправности	Способ устранения		
ПРОБУКСОВКА			
Износ фрикционных накладок ведомого диска	Заменить накладки или ведомый диск в сборе		
Попадание масла на поверхности трения сцепления через уплотнения двигателя или коробки передач	Удалить масло с поверхностей трения, устраните течь масла		
Поломка нажимной пружины	Заменить нажимную пружину или нажимной диск с кожухом и пружиной в сборе		
Сцепление частично выключено из-за неисправности привода выключения	Устранить неисправность привода выключения сцепления в соответствии с руководством по эксплуатации транспортного средства.		
«ВЕДЕНИЕ»			
Привод выключения сцепления не обеспечивает необходимого хода муфты выключения	Проверить работу привода выключения сцепления и устранить неисправности		
Коробление нажимного диска	Заменить нажимной диск с кожухом в сборе		
Использование ведомого диска после ремонта с недопустимым биением и кривизной	Заменить ведомый диск		

Причина неисправности		Способ устранения			
Разрушение диска	накладки	ведомого	Заменить ведомый ди	накладки іск	или

ВЫДЕЛЯЮЩИЙСЯ ШУМ В МЕСТЕ РАСПОЛОЖЕНИЯ СЦЕПЛЕНИЯ

Отсутствие смазки в подшипнике	Смазать муфту выключения	
муфты выключения или его износ	сцепления через масленку, если	
	шум не устранился - заменить	
	муфту с подшипником	

СЦЕПЛЕНИЕ ЯМЗ-238

УСТРОЙСТВО И РАБОТА СЦЕПЛЕНИЯ

Сцепление модели ЯМЗ-238 двухдисковое, сухое, фрикционного типа, с периферийным расположением цилиндрических пружин.

Кожух 16 (рис. 110) сцепления, штампованный из листовой стали, с нажимным диском 19 в сборе устанавливается на маховике 20 двигателя, а ведомые диски 21 — на шлицевой части первичного вала коробки передач.

Передний и задний ведомые диски устанавливаются в определенном положении, как показано на рисунке. Ведомые диски сцепления зажимаются постоянным усилием цилиндрических нажимных пружин 17 между маховиком двигателя, средним и нажимным дисками. Под пружины со стороны нажимного диска подложены термоизолирующие прокладки 18. Нажимной и средний ведущие диски связаны с маховиком четырьмя шипами, находящимися на наружной поверхности дисков. В зажатом состоянии ведомые диски передают крутящий момент двигателя на первичный вал коробки передач.

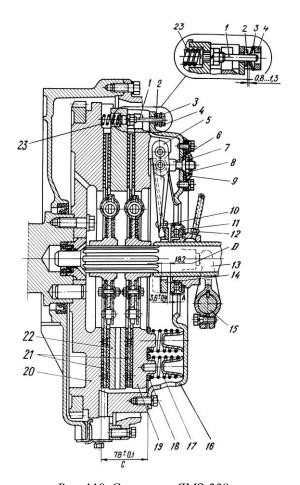


Рис. 110. Сцепление ЯМЗ-238:

1 — шток; 2 — кольцо; 3 — тарельчатая пружина; 4 — планка; 5 — оттяжной рычаг; 6 — вилка оттяжного рычага; 7 — регулировочная гайка; 8 — опорная пластина; 9 — стопорная пластина; 10 — петля пружины оттяжного рычага; 11 — муфта выключения сцепления с подшипником; 12 — шланг подачи смазки к муфте выключения сцепления; 13 — вилка выключения сцепления; 14 — упорное кольцо оттяжных рычагов; 15 — вал вилки выключения сцепления; 16 —кожух сцепления; 17 — нажимная пружина; 18 — термоизолирующая прокладка; 19 — нажимной диск; 20 — маховик; 21 — ведомые диски; 22 — средний ведущий диск; 23 — отжимная пружина;. D — минимальный ход выжимной муфты

Выключение сцепления производится муфтой 11. Муфта с подшипником, перемещаясь в сторону двигателя, отводит нажимной диск от ведомого диска, передавая усилие через четыре жестких оттяжных рычага 5. Рабочий ход муфты выключения сцепления, с учетом свободного хода, должен быть не менее 18,2 мм (размер «D»). Величина свободного хода регулируется механизмом выключения сцепления. Упорное кольцо оттяжных рычагов перемещается в сторону коробки передач на 27 мм за счет допустимого износа фрикционных накладок.

Гарантированные зазоры между ведомыми дисками и поверхностями трения маховика, среднего ведущего и нажимного дисков при выключении сцепления по мере износа накладок обеспечиваются механизмом автоматической регулировки отхода среднего диска, который состоит из штоков 1, закрепленных в каждом из четырех шипов среднего ведущего диска, разрезных колец 2, для перемещения по штоку которых необходимо определенное усилие, упорных планок 4, которые крепятся с кожухом сцепления болтами к маховику, и тарельчатых пружин 3, установленных на штоке между кольцом 2 и планкой 4.

При выключении сцепления нажимной диск 19 отходит назад не менее чем на 2 мм, и освобождает задний ведомый диск 21. Средний ведущий диск 22 под действием пружины 23 так же отходит назад, до упора кольца 2 в планку 4 через тарельчатую пружину, на величину 1,2±0,1 мм, освобождая передний ведомый лиск.

По мере износа фрикционных накладок сцепления средний ведущий диск под действием нажимных пружин нажимного диска перемещается к маховику, кольца 2 при этом упираются в кожух сцепления, перемещаясь по штокам 1 и сохраняя размер между кольцами и тарельчатыми пружинами. При износе накладок ведомых дисков торец муфты выключения сцепления упрется в торец крышки подшипника первичного вала коробки передач; в этом случае изношенные накладки ведомых дисков заменить новыми.

УСТАНОВКА СЦЕПЛЕНИЯ НА ДВИГАТЕЛЬ

Установка сцепления на двигатель производится в следующем порядке:

- 1 установить передний ведомый диск;
- 2 установить средний ведущий диск со штоками;
- 3 установить задний ведомый диск;

ВНИМАНИЕ! МОГУТ УСТАНАВЛИВАТЬСЯ ВЕДОМЫЕ ДИСКИ СЦЕПЛЕНИЯ: ПЕРЕДНИЙ 238-1601130-Б, ЗАДНИЙ 238-1601131 (НЕ ВЗАИМОЗАМЕНЯЕМЫЕ); ИЛИ ДВА ДИСКА 238-1601130-Г2 (ВЗАИМОЗАМЕНЯЕМЫЕ). ДВА ДИСКА 238-1601130-Г2 МОЖНО УСТАНОВИТЬ ВЗАМЕН ДВУХ ДИСКОВ ПЕРЕДНЕГО 238-1601130-Б И ЗАДНЕГО 238-1601131. И НАОБОРОТ. ТОРЕЦ УДЛИНЕННОЙ ЧАСТИ СТУПИЦЫ ДИСКА 238-1601130-Г2 ИМЕЕТ МАРКИРОВКУ "238-1601130-Г2". ПРИ ИХ УСТАНОВКЕ СЛЕДУЕТ ВЫПОЛНЯТЬ СЛЕДУЮЩИЕ УСЛОВИЯ: ДИСК К МАХОВИКУ - МАРКИРОВАННОЙ СТОРОНОЙ СТУПИЦЫ К ДВИГАТЕЛЮ; ДИСК К НАЖИМНОМУ ДИСКУ – МАРКИРОВАННОЙ СТОРОНОЙ СТУПИЦЫ К КОРОБКЕ ПЕРЕДАЧ.

- 4 установить нажимной диск с кожухом в сборе, закрепив его на маховике при помощи восьми коротких болтов;
- 5 надеть разрезные кольца 2 на штоки 1 до упора в кожух сцепления;
- 6 надеть четыре. тарельчатые пружины выпуклой стороной к разрезным кольцам;
- 7 установить четыре упорных планки и закрепить их с кожухом к маховику при помощи восьми длинных болтов.

После установки сцепления на маховик убедитесь в том, что кольца на штоках стоят с упором в кожух, обеспечивая зазор $1,2\pm0,1\,$ мм между кольцами и тарельчатыми пружинами при включенном сцеплении.

Провести регулировку свободного хода муфты выключения сцепления.

ВНИМАНИЕ! ОТСУТСТВИЕ СВОБОДНОГО ХОДА МУФТЫ ВЫКЛЮЧЕНИЯ СЦЕПЛЕНИЯ ПРИВЕДЕТ К ВЫХОДУ ИЗ СТРОЯ НАЖИМНОГО ПОДШИПНИКА И УСИЛЕННОЙ ПРОБУКСОВКЕ ВЕДОМЫХ ДИСКОВ.

После регулировок проверить сцепление на отсутствие «ведения». Эту проверку проводить на работающем двигателе при включенной первой передаче и выключенном сцеплении.

РЕГУЛИРОВКА ПОЛОЖЕНИЯ УПОРНОГО КОЛЬЦА ОТТЯЖНЫХ РЫЧАГОВ

При сборке нажимного диска с кожухом в сборе отрегулировать положение упорного кольца. Эту регулировку производить в приспособлении, имеющем установочный размер 27±0,1 мм (рис. 111) регулировочными гайками 6 оттяжных рычагов при фиксированном положении кожуха и нажимного диска. Регулировкой обеспечить размер «В», равный 64±0,1 мм, при этом упорные поверхности всех четырех оттяжных рычагов 5 должны одновременно касаться упорного кольца 4. Перекос упорного кольца приведет к неравномерному отходу нажимного диска при выключении сцепления или ненормальной его работе.

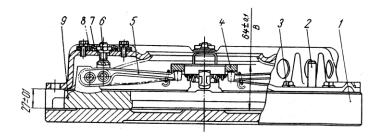


Рис. 111. Приспособление для сборки нажимного диска с кожухом в сборе:

1-подставка; 2-направляющий штифт; 3-болт крепления кожуха; 4-упорное кольцо оттяжных рычагов; 5-оттяжной рычаг; 6-регулировочная гайка; 7-стопорная пластина; 8-опорная пластина; 9-нажимной диск

После регулировки положения упорного кольца регулировочными гайками 6 установить стопорные 7 и опорные 8 пластины регулировочных гаек. Завернуть все восемь болтов крепления стопорных и опорных пластин, установив пружинные шайбы под головки болтов.

В случае использования нажимного диска с кожухом в комплекте с ведомыми дисками после ремонта, на которых установлены фрикционные накладки толщиной 4,15 мм, при регулировке положения упорного кольца размер «В» установить равным $67\pm0,1$ мм.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Техническое обслуживание сцепления проводить аналогично техническому обслуживанию сцепления ЯМЗ-182 (смотри выше) с дополнением:

• Каждое ТО-1 проверить и, если необходимо, отрегулировать свободный ход муфты выключения сцепления. Свободный ход муфты выключения сцепления, определяемый зазором между упорным кольцом и подшипником муфты (размер «А» рис. 110. 3,2—4,0 мм) достигается регулировкой механизма выключения выключения с указаниями инструкции по эксплуатации транспортного средства. После регулировок проверить сцепление на отсутствие «ведения». Эту проверку проводить на работающем двигателе при включенной первой передаче и выключенном сцеплении.

ВНИМАНИЕ! РЕГУЛИРОВКА СВОБОДНОГО, ХОДА МУФТЫ ВЫКЛЮЧЕНИЯ СЦЕПЛЕНИЯ РЕГУЛИРОВОЧНЫМИ ГАЙКАМИ ОТТЯЖНЫХ РЫЧАГОВ КАТЕГОРИЧЕСКИ ЗАПРЕЩАЕТСЯ.

ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ УСТРАНЕНИЯ

Неисправность

Способ устранения

ПРОБУКСОВКА

Отсутствует свободный ход муфты выключения сцепления

Износ фрикционных накладок ведомого диска

Попадание масла на поверхности трения сцепления через уплотнения двигателя или коробки передач

Сцепление частично выключено из-за неисправности привода выключения

Отрегулировать свободный ход муфты выключения сцепления

Заменить накладки или ведомый диск в сборе

Удалить масло с поверхностей трения, устраните течь масла

Устранить неисправность привода выключения сцепления в соответствии с руководством по эксплуатации транспортного средства

«ВЕДЕНИЕ»

Привод выключения сцепления не обеспечивает необходимого хода муфты выключения

Коробление нажимного диска

Использование ведомого диска после ремонта с недопустимым биением и кривизной

Разрушение накладки ведомого диска

Большой зазор между упорным кольцом оттяжных рычагов и нажимным подшипником

Проверить работу привода выключения сцепления и устраните неисправности

Замените нажимной диск с кожухом в сборе

Заменить ведомый диск

Заменить накладки или ведомый лиск

Отрегулировать свободный ход муфты выключения сцепления

ВЫДЕЛЯЮЩИЙСЯ ШУМ В МЕСТЕ РАСПОЛОЖЕНИЯ СЦЕПЛЕНИЯ

Отсутствие смазки в подшипнике муфты выключения или его износ

Смажьте муфту выключения сцепления через масленку, если шум не устранился - заменить муфту с подшипником

МЕХАНИЗМ ГАШЕНИЯ КРУТИЛЬНЫХ КОЛЕБАНИЙ И ОТБОРА МОЩНОСТИ

Силовые агрегаты могут комплектоваться механизмом гашения крутильных колебаний и отбора мощности (рис. 112), предназначенным для гашения резонансных крутильных колебаний и предохранения систем трансмиссии от разрушения.

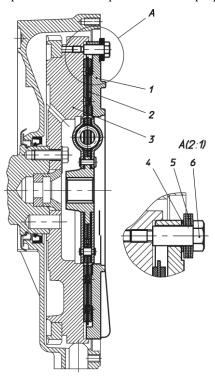


Рис. 112. Механизм гашения крутильных колебаний и отбора мощности:

1 - фланец прижимной; 2 - ведомый диск; 3 - маховик; 4 - шайба проставочная; 5 - пакет тарельчатых пружин; 6 - болт ступенчатый.

Механизм установлен на маховике двигателя и состоит из прижимного фланца 1, ведомого диска 2 с фрикционными накладками и механизмом гашения крутильных колебаний, пакетов тарельчатых пружин 5 и ступенчатых болтов 6.

Ведомый диск 2 постоянно поджат к маховику 3 через фланец 1 пакетами тарельчатых пружин 5, собранных на ступенчатых болтах 6. Ступенчатые болты ввернуты в маховик до упора. При установке ступенчатых болтов на их резьбовую часть наносится герметик УГ-6 ТУ 6-01-1285-84, затяжка производится с усилием 49-59 H-M (5-6 кгc-M).

Количество пакетов тарельчатых пружин и болтов подобрано так, что созданный ими момент трения позволяет передавать крутящий момент с маховика на вал отбора мощности до 1700 Н-м (170 кгс-м). При нагружении ведомого диска крутящим моментом более 1700 Н-м (170 кгс-м) усилия пружин недостаточно для удержания ведомого лиска проворачивается относительно тем маховика самым предохраняет дальнейшую кинематическую связь от разрушения.

В процессе эксплуатации механизм технического обслуживания не требует.

Возможные в процессе эксплуатации неисправности ведомого диска аналогичны неисправностям ведомого диска сцепления. Преждевременная пробуксовка ведомого диска устраняется установкой дополнительных пакетов тарельчатых пружин совместно с болтом и дальнейшей проверкой момента трения в следующем порядке:

- 1 Застопорить маховик двигателя.
- 2 Нагрузить ведомый диск механизма моментом менее 1700 Н·м (170 кгс·м). Диск не должен проворачиваться относительно маховика.
- 3 Нагрузить ведомый диск механизма моментом 1700...1900 Н·м (170...190 кгс·м). Диск должен проворачиваться относительно маховика.

КОРОБКА ПЕРЕДАЧ

Силовой агрегат, в зависимости от модели и комплектации (см. раздел «Назначение и комплектация силовых агрегатов»), может комплектоваться коробкой передач нескольких моделей и различных комплектаций.

Правила эксплуатации и технического обслуживания настоящего раздела распространяются на коробки передач производства ОАО «Автодизель» и ОАО «ТМЗ». При эксплуатации коробок передач других изготовителей руководствоваться положениями эксплуатационных документов соответствующих предприятий.

КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ

Модель коробки передач	Основные конструктивные отличия
ям3-236П	Базовая модель. Под двухдисковое сцепление. На верхней крышке заглушка, на крышке выходного вала фланец для механизма привода спидометра, фланец карданного вала с 8-ю отверстиями Ø 10 мм.
ЯМЗ-236П1	Коробка передач 236П (база). Фланец карданного вала с торцовыми крестообразными шлицами
ЯМЗ-236ПЗ	Коробка передач 236П (база). Под диафрагменное сцепление. Отличается размерами муфты выключения сцепления, наличием скобы для зацепления оттяжной цилиндрической пружины муфты
ЯМЗ-236П4	Коробка передач 236ПЗ (база). Фланец карданного вала с торцовыми шлицами.
ЯМЗ-236П5	Коробка передач 236П (база). Короткий рычаг переключения на месте заглушки на верхней крышке.
ЯМЗ-236П7	Коробка передач 236П5 (база). Под диафрагменное сцепление.
ЯМЗ-236ПО	Коробка передач 236П (база). Возможность отбора мощности от заднего конца промежу-точного вала. Крышка подшипника промежуточного вала более глубокая.

Модель коробки передач	Основные конструктивные отличия
ЯМЗ-236ПОЗ	Коробка передач 236ПЗ (база) с возможностью отбора мощности, более глубокая крышка подшипника.
ЯМЗ-236ПО5	Коробка передач 236П5 (база) с возможностью отбора мощности, более глубокая крышка подшипника.
ЯМЗ-236Л	Коробка передач 236П (база). Внешних отличий от КП 236П не имеет, отличается передаточным числом 5-ой передачи (0,71 вместо 0,664)
ЯМЗ-236Л1	Коробка передач 236Л (база). Под диафрагменное сцепление. Отличается размерами муфты выключения сцепления, наличием скобы для зацепления оттяжной цилиндрической пружины муфты.
ЯМЗ-236У	Коробка передач 236П (база). Короткий рычаг переключения на месте заглушки на верхней крышке. Отсутствует на крышке выходного вала фланец для деталей привода спидометра.
ЯМЗ-236У1	Коробка передач 236У (база). Фланец карданного вала с торцовыми шлицами.
ЯМЗ-236У2	Коробка передач 236У (база). Под диафрагменное сцепление. Отличается размерами муфты выключения сцепления, наличием скобы для зацепления оттяжной цилиндрической пружины муфты. Фланец карданного вала с торцовыми шлицами, без привода спидометра.
ЯМЗ-236У3	Коробка передач 236У (база). Под диафрагменное сцепление. Отличается размерами муфты выключения сцепления, наличием скобы для зацепления оттяжной цилиндрической пружины муфты.
ЯМЗ-236У4	Коробка передач 236У (база). В герметичном исполнении. Отличается литыми крышками люков картера сцепления, на верхней крышке установлен сапун, на нижней - пробка.
ЯМЗ-236У5	В герметичном исполнении под диафрагменное сцепление (муфта выключения, скоба, пружина как на 236ПЗ, крышки люков картера сцепления как на 236У4).

Модель				
коробки передач	Основные конструктивные отличия			
ЯМЗ-236УО	Коробка передач 236У (база). С возможностью отбора мощности от заднего конца промежуточного вала. Крышка подшипника промежуточного вала глубокая, крышка выходного вала без фланца для привода спидометра, короткий рычаг переключения.			
ЯМЗ-236УОЗ	Коробка передач 236УО (база). Под диафрагменное сцепление. Отличается размерами муфты выключения сцепления, наличием скобы для зацепления оттяжной цилиндрической пружины муфты.			
ЯМЗ-236Н	Коробка передач 236П (база). Коробка передач с длинным рычагом переключения передач, без привода спидометра на крышке выходного вала, фланец карданного вала Ø 205 мм.			
ЯМЗ-236Н1	Коробка передач 236Н (база). Фланец карданного вала с торцовыми шлицами.			
ЯМЗ-236Н3	Коробка передач 236Н (база). Под диафрагменное сцепление. Отличается размерами муфты выключения сцепления, наличием скобы для зацепления оттяжной цилиндрической пружины муфты.			
ЯМЗ-236Н4	Коробка передач 236Н3 (база). Фланец карданного вала с торцовыми шлицами.			
ЯМЗ-238ВМ4	Коробка передач (КП) под двухдисковое сцепление, без рычага переключения передач, с заглушкой на верхней крышке, фланец карданного вала обычный с 16-ю отверстиями, крышка выходного вала с фланцем под привод спидометра.			
ЯМЗ-238ВМ5	КП 238ВМ4 под диафрагменное сцепление, отличается размерами муфты выключения сцепления, наличием скобы для зацепления оттяжной цилиндрической пружины муфты.			
ЯМ3-238ВМ7	Отличается от КП 238BM5 фланцем карданного вала с торцовыми шлицами по ISO.			
ЯМЗ-238ВК4	Отличается от КП 238ВМ4 наличием короткого рычага переключения передач, устанавливаемого взамен заглушки на верхней крышке.			

Модель коробки передач	Основные конструктивные отличия
ямз-238вк5	КП 238ВК4 под диафрагменное сцепление, отличается размерами муфты выключения сцепления, наличием скобы для зацепления оттяжной цилиндрической пружины муфты.
ямз-238ВК7	Отличается от КП 238ВК5 фланцем карданного вала с торцовыми шлицами по ISO.
ЯМЗ-238ВЛ	Отличается от КП 238ВК4 электромагнитным клапаном, работающим на напряжении 12В, у КП 238ВК4 (ВМ4, ВК5, ВМ5 и др.) – 24В, (соответствующая маркировка на самом клапане: 12В или 24В).
ЯМЗ-238ВЛ1	КП 238ВЛ под диафрагменное сцепление, отличается размерами муфты выключения сцепления, наличием скобы для зацепления оттяжной цилиндрической пружины муфты, фланец карданного вала обычный с 8-ю отверстиями Ø10 мм.
ЯМЗ-238ВУ	Отличается от КП 238ВК4 только отсутствием на крышке выходного вала фланца для крепления деталей привода спидометра.
ЯМЗ-238ВУ1	КП 238ВУ под диафрагменное сцепление, отличается размерами муфты выключения сцепления, наличием скобы для зацепления оттяжной цилиндрической пружины муфты.
ЯМЗ-238ВУ2	Отличается от КП 238ВУ отсутствием короткого рычага переключения передач и наличием заглушки на верхней крышке.
ЯМЗ-238ВУ3	КП 238ВУ2 под диафрагменное сцепление, отличается размерами муфты выключения сцепления, наличием скобы для зацепления оттяжной цилиндрической пружины муфты.
ЯМЗ-238ВУ4	Коробка передач 238ВУ2 в герметичном исполнении.
ЯМЗ-238ВУ5	Коробка передач 238ВУЗ с герметичным картером сцепления.
ЯМЗ-238ВУ6	Отличается от КП 238ВУ5 фланцем карданного вала с торцовыми шлицами по ISO.
ЯМЗ-238ВУ7	Отличается от КП 238ВУЗ фланцем карданного вала с торцовыми шлицами по ISO.

КОРОБКИ ПЕРЕДАЧ СЕМЕЙСТВА ЯМЗ-238ВМ

ОСНОВНЫЕ МОДЕЛИ КОРОБОК ПЕРЕДАЧ

Модель коробки передач	Предприятие изготовитель	Предприятие потребитель
ЯМЗ-238ВМ	OAO «TM3»	РУП «МАЗ»
ЯМЗ-238ВК		ХК «АвтоКрАЗ»
ЯМЗ-238ВУ		ОАО «АЗ«Урал»
ЯМЗ-238ВЛ		АМО «ЗИЛ»

ПРЕДУПРЕЖДЕНИЕ

Исправная работа коробки передач и срок ее службы находятся в прямой зависимости от культуры эксплуатации, поэтому необходимо внимательно отнестись к проведению всех регламентных работ, предусмотренных настоящей инструкцией.

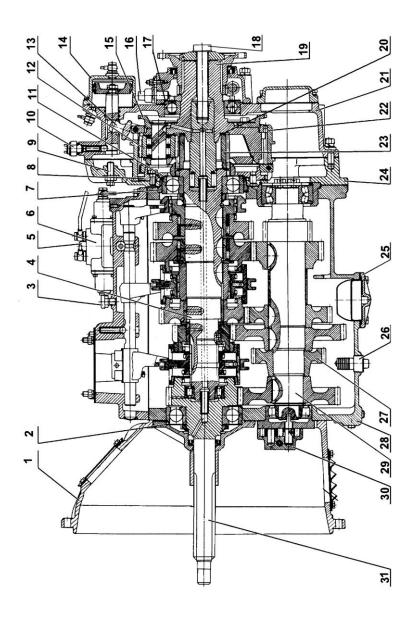
Применение смазочных материалов, не указанных в настоящем руководстве, **не разрешается**.

Во избежание повреждения синхронизатора демультипликатора и синхронизаторов основной коробки передач включение передач в основной коробке при включенной лампе сигнализатора переключения демультипликатора не допускается.

Во избежание чрезмерного возрастания частоты вращения коленчатого вала двигателя и повышенного износа синхронизаторов коробки передач не допускается включение низшего диапазона в демультипликаторе при скорости движения автомобиля выше 35 км/час.

Необходимо соблюдать правила буксировки автомобиля.

Рис. 113. Коробка передач ЯМЗ-238ВМ:


1 - картер сцепления; 2 - прокладки регулировочные первичного вала; 3 - сапун картера; 4 - вал вторичный; 5 - сапун воздухораспределителя; 6 - воздухораспределитель; 7 - кольцо центрирующее; 8 - муфта включения низшего диапазона; 9 - болт регулировки упора штока переключения демультипликатора с контргайкой; 10 - включатель сигнализатора переключения демультипликатора; 11 - прокладки регулировочные вторичного вала; 12 - сателлиты; 13 - вилка переключения демультипликатора; 14 - цилиндр переключения демультипликатора; 15 - муфта включения высшего диапазона; 16 - датчик скорости системы блокировки низшего диапазона; 17 - регулировочные прокладки выходного вала; 18 - болт крепления в фланца выходного вала, 19 - вал выходной; 20 - кольцо упорное солнечной шестерни; 21 картер демультипликатора; 22 - коронная шестерня; 23 солнечная шестерня; 24 - проставка; 25 - крышка заборника насоса с сеткой; 26 - пробка сливная с магнитом; 27 - шестерня отбора мощности; 28 - картер основной коробки; 29 - вал промежуточный; 30 - насос масляный; 31 - вал первичный.

ХАРАКТЕРИСТИКИ КОРОБКИ ПЕРЕДАЧ

Коробка передач ЯМЗ-238ВМ механическая, восьмиступенчатая, с синхронизаторами на всех передачах, кроме заднего хода, и состоит из основной четырехступенчатой коробки передач и двухдиапазонного планетарного демультипликатора.

Коробки передач производства ОАО «ТМЗ» (обозначаются буквой «В» в маркировке) комплектуются картером демультипликатора из алюминиевого сплава, опорой штока (между цилиндром и картером демультипликатора) механизма переключения демультипликатора с измененным расположением включателя сигнальной лампы демультипликатора.

Механизм переключения диапазонов демультипликатора оснащен автоматической системой блокировки включения низшего диапазона (АСБП).

Реле АСБП устроено таким образом, что разрешает включение низшего диапазона при частоте вращения выходного вала коробки передач не более 920 мин⁻¹, что в зависимости от передаточных чисел ведущего моста, раздаточной коробки, радиуса качения колёс соответствует скорости движения автомобиля 25 - 30 км/час. Для каждого конкретного автомобиля эта величина может быть с достаточной точностью определена как частное от деления величины максимальной (кинематической) скорости на 3,5.

Заправочная ёмкость системы смазки коробки передач 7,5 Уровень определяется нижней кромкой литра. масла проставки, контрольного отверстия на правой стороне основной расположенной между картерами коробки демультипликатора. Пробка отверстия маслозаливного расположена на верхней крышке основной коробки с левой стороны. В качестве заливного также может использоваться контрольное отверстие.

ПЕРЕДАТОЧНЫЕ ЧИСЛА КОРОБКИ ПЕРЕДАЧ

Передача	Передача в основной коробке	Диапазон в демультипли- каторе	Передаточное число
1	1	Низший	7,30
2	2	Низший	4,86
3	3	Низший	3,50
4	4	Низший	2,48
5	1	Высший	2,09
6	2	Высший	1,39
7	3	Высший	1,00
8	4	Высший	0,71
Задний ход	Задний ход	Низший	10,46

ЭКСПЛУАТАЦИЯ КОРОБКИ ПЕРЕДАЧ

Переключение передач с первой по четвертую и с пятой по восьмую производите перемещением рычага переключения в соответствующее положение (рис. 113).

При управлении коробкой передач с помощью механического дистанционного привода положения рукоятки рычага переключения передач могут отличаться от приведенных на схеме и указываются в руководстве по эксплуатации автомобиля.

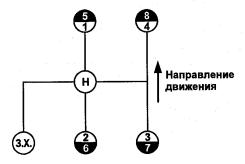


Рис. 114. Схема положений рычага переключения передач

Для переключения с четвертой на пятую передачу переместить кнопку переключения демультипликатора в положение включения высшего диапазона при включенной четвертой передаче в основной коробке передач (расположение органов управления демультипликатором указано в руководстве по эксплуатации автомобиля). Затем перевести рычаг переключения передач в нейтральное положение. Задержать пока не погаснет лампа сигнализатора и включить пятую передачу.

Для перехода с пятой на четвертую передачу переместить кнопку переключения демультипликатора на включение низшего диапазона при включенной пятой передаче, скорость автомобиля при этом не должна превышать 35 км/час. Затем рычаг переключения передач перевести в нейтральное положение, задержать, пока не погаснет лампа сигнализатора, и включить четвертую передачу в основной коробке.

В момент перехода рычага переключения передач через нейтральное положение происходит автоматическое переключение диапазонов в демультипликаторе. Затухание сигнальной лампы свидетельствует о завершении процесса переключения диапазонов.

ВНИМАНИЕ! ТРОГАНИЕ ГРУЖЕНОГО АВТОМОБИЛЯ С МЕСТА ПРОИЗВОДИТСЯ НА ПЕРВОЙ ПЕРЕДАЧЕ. ТРОГАНИЕ НА ВТОРОЙ ПЕРЕДАЧЕ ДОПУСКАЕТСЯ ТОЛЬКО НА ДОРОГАХ С ТВЕРДЫМ ПОКРЫТИЕМ ПРИ ЧАСТИЧНОЙ ЗАГРУЗКЕ АВТОМОБИЛЯ.

Движение задним ходом следует осуществлять при включенном низшем диапазоне в демультипликаторе. При переводе рычага переключения передач из нейтрального положения в положение для включения заднего хода должно ощущаться сопротивление пружинного предохранителя.

ВНИМАНИЕ! ЗАДНИЙ ХОД ВКЛЮЧАТЬ ТОЛЬКО ПОСЛЕ ПОЛНОЙ ОСТАНОВКИ АВТОМОБИЛЯ. НЕ ДОПУСКАЕТСЯ ВКЛЮЧЕНИЕ ЗАДНЕГО ХОДА И ПЕРВОЙ ПЕРЕДАЧИ ПРИ ДВИЖУЩЕМСЯ АВТОМОБИЛЕ.

Задний ход и первую передачу включать лишь при частоте вращения коленчатого вала, соответствующей минимальным оборотам холостого хода двигателя с задержкой не менее 10 секунд после выжима педали сцепления.

Включение без задержки приводит к скрежету и повреждению зубьев муфты включения и шестерён.

Если при соблюдении этих правил включения заднего хода и первой передачи происходит со скрежетом, это свидетельствует о необходимости проверки работы систем сцепления (см. подраздел «Эксплуатация сцепления»).

ПРАВИЛА БУКСИРОВКИ АВТОМОБИЛЯ

Буксировку автомобиля с неработающим двигателем при выключенных передачах в коробке передач допускается производить на расстояние не более 20 км и только при включенном высшем диапазоне в демультипликаторе со скоростью не более 30 км/час.

Буксировку автомобиля на большее расстояние следует производить одним из следующих способов:

- 1. С отсоединенным карданным валом.
- 2. Установить орган управления раздаточной коробкой автомобиля в нейтральное положение, если это не запрещено инструкцией по эксплуатации автомобиля.
- 3. Включить седьмую передачу и выключить сцепление.

Буксировка автомобиля с нарушением изложенных правил может привести к выходу из строя коробки передач.

МАСЛА И СМАЗКИ

Для смазки коробки передач следует применять рекомендованные трансмиссионные масла (см. раздел «Эксплуатационные материалы»).

Уровень масла ниже контрольного отверстия не допускается.

Для смазки деталей механизма выключения сцепления следует применять смазки ШРУС-4М ТУ 38401-58-128-95 или ШРУС-4 ТУ 0254-001-05766076-98.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ КОРОБКИ ПЕРЕДАЧ

Виды и периодичность технического обслуживания коробки передач соответствуют видам и периодичности технического обслуживания двигателя.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ ПОСЛЕ ОБКАТКИ АВТОМОБИЛЯ

После обкатки автомобиля заменить масло в картере коробки передач, очистить от продуктов приработки сетку маслозаборника и магнит.

ПЕРВОЕ ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ (ТО-1)

- 1 Проверить уровень масла в картере и при необходимости долить.
- 2 Проверить работу узлов АСБП. Низший диапазон в коробке передач не должен включаться при скорости транспортного средства, соответствующей частоте вращения выходного вала более 1000 мин ⁻¹.

ВТОРОЕ ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ (ТО-2)

- 1 Выполнить все операции первого технического обслуживания ТО-1.
- 2 Проверить и при необходимости отрегулировать заднюю опору коробки передач в соответствии с руководством по эксплуатации автомобиля (если опора предусмотрена конструкцией автомобиля).
- 3 Произвести очистку и смазку деталей воздухораспределителя коробки передач (с использованием смазки № 158 по ТУ 38.101.320-77. Допускается применение Литола 24).
- 4 Произвести очистку и смазку манжет поршня и стенок цилиндра переключения демультипликатора.

Смену масла в коробке передач с промывкой картера, сетки и магнита производить в зависимости от условий эксплуатации по следующей схеме:

- автомобили с годовым пробегом 80 тыс. км и более через 50 тыс. км;
- автомобили с годовым пробегом менее 80 тыс. км и при тяжелых условиях эксплуатации (грунтовые дороги, гористая местность или жаркий, сухой климатический район и т.п.) через 30-40 тыс. км.

Масло из коробки передач сливать сразу после работы в горячем состоянии. Коробку передач промывать индустриальным маслом И-12A или И-20A по ГОСТ 20799-88, для чего:

- 5,5-6 л его залить в картер коробки;
- установить рычаг переключения передач в нейтральное положение, пустить двигатель на 7-8 минут, после чего остановить его, слить промывочное масло и залить свежее.

Категорически запрещается промывать коробку передач керосином или дизельным топливом во избежание отказа в работе масляного насоса из-за недостаточного разрежения на всасывании и как следствие, выхода из строя коробки передач. В случае полной переборки коробки передач масляный насос перед установкой смазать применяемым в коробке передач маслом.

ОСОБЕННОСТИ СБОРКИ КОРОБКИ ПЕРЕДАЧ

Перед установкой демультипликатора с проставкой на картер основной коробки и проставки на картер демультипликатора на прокладки нанести анаэробный уплотняющий состав УГ-6 ТУ 6-01-1285-84 с обеих сторон непрерывной полосой шириной 2-3 мм по контуру.

При установке крышки подшипника первичного вала (рис. 115), демультипликатора с проставкой на картер основной коробки (рис. 116), крышке заднего подшипника выходного вала демультипликатора (рис. 117) обеспечить минимальные осевые люфты валов с помощью регулировочных прокладок, подобранных следующим образом:

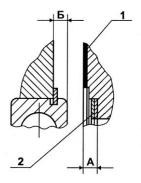


Рис. 115. Регулировка осевого люфта первичного вала: 1 - уплотнительная прокладка; 2 - прокладки регулировачные.

Замерить размер "А" глубины проточки под подшипник в крышке подшипника с учетом толщины прокладки с точностью 0,1 мм (рис. 115).

Замерить размер "Б" от торца наружного кольца подшипника до поверхности стенки картера при запрессованном до упора подшипнике с точностью 0,1 мм.

Подобрать суммарную номинальную толщину регулировочных прокладок S из условия:

$$S = [A - B - (0,2...0,3)]_{MM}$$

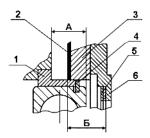


Рис. 116. Регулировка осевого люфта вторичного вала:

- 1 кольцо центрирующее; 2 прокладка уплотнительная;
- 3 проставка; 4 кольцо пружинное; 5 регулировочные прокладки; 6 зубчатая муфта.

Замерить размер "А" (рис. 116) от торца наружного кольца подшипника до поверхности картера с точностью до 0,1 мм, убедившись, что центрирующее кольцо запрессовано до упора, а пружинное кольцо и подшипник плотно прижаты к центральному кольцу.

Замерить размер "Б" глубины проточки под подшипник в зубчатой муфте, с учетом проставки и проточки с точностью 0,1 мм.

Подобрать суммарную толщину регулировочных прокладок S из условия

$$S = [B - A - (0,2...0,3)]_{MM}$$

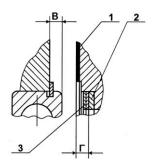


Рис. 117. Регулировка осевого люфта выходного вала:

1 - уплотнительная прокладка; 2 - упорное кольцо;

3 -регулировочные прокладки

Замерить размер "В" (рис. 117) от торца наружного кольца подшипника до поверхности картера с точностью до 0,05 мм, убедившись, что пружинное кольцо и подшипник плотно прижаты к поверхности картера.

Замерить размер " Γ " от прокладки до упорного кольца в выточке крышки с точностью до $0.05~\mathrm{mm}$.

Подобрать суммарную номинальную толщину регулировочных прокладок S из условия:

$$S = [\Gamma - B - (0,15...0,2)]_{MM}$$

Затяжку болтов крепления картера демультипликатора производить в два приема (см. таблицу "Моменты затяжки").

Последовательность затяжки согласно рис. 118.

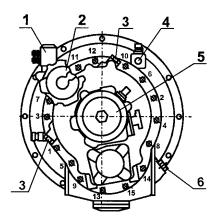


Рис. 118. Последовательность затяжки болтов крепления картера демультипликатора и размещение узлов:

1 - электромагнит; 2 - пневмоцилиндр; 3 - оси вилки переключения демультипликатора; 4 - воздухораспределитель; 5 - выходной фланец; 6 - заливная пробка.

При ремонте демультипликатора с заменой деталей синхронизатора отрегулировать требуемую величину хода штока при включении высшего диапазона, обеспечив разгрузку сухарей вилки при работе на высшем диапазоне, для чего:

- 1 Включить высший диапазон в демультипликаторе, подав воздух под давлением от 784 до 833 кПа (8...8,5 кгс/см ²) в заднюю полость пневмоцилиндра убедитесь в том, что муфты включения высшего диапазона вошли в полное зацепление. При полном зацеплении лампочка сигнализатора должна погаснуть фланец крепления карданного вала не должен проворачиваться от усилия руки.
- 2 Завернуть регулировочный болт до упора в шток поршня (при вращении болта должно ощущаться возрастание сопротивления провороту). Повторить операцию несколько раз убедившись в том, что упор ощущается при одном и том же положении головки болта.
- 3 Довернуть регулировочный болт от положения упора его в торец на один оборот (5 граней головки) и удерживая его в этом положении застопорить контргайкой затянув

ее крутящим моментом 137 - 157 Н·м (14 - 16 кгс·см). После регулировки фланец крепления карданного вала должен проворачиваться легко без заеданий, от усилия руки. Фланец проворачивать на угол не менее 360° .

ВНИМАНИЕ! НЕПРАВИЛЬНАЯ РЕГУЛИРОВКА ВЫЗЫВАЕТ ПЕРЕГРУЗКУ СУХАРЕЙ ВИЛКИ ВКЛЮЧЕНИЯ ДИАПАЗОНОВ, ЧТО ПРИВОЛИТ К БЫСТРОМУ ИХ РАЗРУШЕНИЮ.

4 Установку демультипликатора на коробку передач производить при вертикальном положении осей валов основной коробки передач. Выходной вал демультипликатора должен проворачиваться от руки при любом включенном диапазоне и выключенных передачах в основной коробке.

ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ КОРОБКИ ПЕРЕЛАЧ И СПОСОБЫ ИХ УСТРАНЕНИЯ

ПЕРЕДАЧ И СПОСОБЫ ИХ УСТРАНЕНИЯ				
Неисправность	Способ устранения			
ЗАТРУДНЁННОЕ ПЕРЕ	КЛЮЧЕНИЕ ПЕРЕДАЧ			
Неполное выключение сцеп-	Отрегулировать свободный ход			
ления (сцепление "ведет")	педали сцепления или, если отказ			
	является следствием неисправ-			
	ности деталей сцепления,			
Износ или повреждение син-	заменить повреждённые детали Заменить неисправный синхро-			
Износ или повреждение син- хронизатора	низатор			
Повреждены зубья зубчатых муфт	Заменить поврежденные детали			
	РАБОТЕ КОРОБКИ ПЕРЕДАЧ			
Недостаточно масла в коробке	Залить масло до уровня кон-			
передач	трольного отверстия			
Износ подшипников валов ко-	Заменить неисправные подшип-			
робки передач	ники			
Повышенный износ зубьев	Заменить изношенные шестерни			
шестерен				
САМОПРОИЗВОЛЬНОЕ В				
ПРИ ДВИЖЕНИИ АВТОМОБИЛЯ				
Неравномерный износ зубьев	з Заменить неисправные детали			
зубчатых муфт	_			
Повышенный износ подшипников	1			
валов коробки передач	ники			
Неисправности фиксаторов штоков механизма переключения передач	з Заменить неисправные детали			
меланизма переключения передач	1			

Неисправность

Способ устранения

САМОПРОИЗВОЛЬНОЕ ВЫКЛЮЧЕНИЕ ДИАПАЗОНОВ В ДЕМУЛЬТИПЛИКАТОРЕ

Поступление сжатого воздуха в полость цилиндра, противоположную включенной передаче

Повышенный износ сухарей вилки

Заменить неисправные уплотнительные кольца золотника и впускного клапана воздухораспределителя Заменить сухари и

отрегулировать ход штока.

НЕВКЛЮЧЕНИЕ ИЛИ ЗАМЕДЛЕННОЕ ВКЛЮЧЕНИЕ ДИАПАЗОНОВ В ДЕМУЛЬТИПЛИКАТОРЕ ПРИ НЕЙТРАЛЬНОМ ПОЛОЖЕНИИ РЫЧАГА ОСНОВНОЙ КОРОБКИ. ЛАМПА СИГНАЛИЗАТОРА ДОЛГО НЕ ГАСНЕТ, ВОЗДУХ ВЫХОДИТ ЧЕРЕЗ САПУН ВОЗДУХОРАСПРЕДЕЛИТЕЛЯ

Износ резины впускного клапана Поломка пружины впускного клапана

Износ уплотнительного кольца впускного клапана

Неравномерное прилегание впускного клапана к корпусу Заедание впускного клапана в

отжатом положении

Износ или затвердение манжет поршня рабочего цилиндра

Заменить изношенный клапан Заменить неисправную пружину

Заменить уплотнительное кольцо

Заменить неисправные детали

Очистить и смазать стержень впускного клапана, при необходимости отполировать Заменить манжеты поршня

НЕВКЛЮЧЕНИЕ ИЛИ ЗАМЕДЛЕННОЕ ВКЛЮЧЕНИЕ ДИАПАЗОНОВ В ДЕМУЛЬТИПЛИКАТОРЕ ПРИ НЕЙТРАЛЬНОМ ПОЛОЖЕНИИ РЫЧАГА. ЛАМПА СИГНАЛИЗАТОРА ДОЛГО НЕ ГАСНЕТ, ВОЗДУХ ВЫХОДИТ ЧЕРЕЗ САПУН ВЕРХНЕЙ КРЫШКИ

Повреждение мембраны воздухораспределителя Износ или затвердение уплотнительных колеп рабочего пи-

Износ или затвердение уплотнительных колец рабочего цилиндра в отверстии под шток вилки переключения

Заменить поврежденную мембрану

Заменить уплотнительное кольцо

ПРОПУСК ВОЗДУХА ЧЕРЕЗ САПУН ВОЗДУХОРАСПРЕДЕЛИТЕЛЯ ПРИ ВКЛЮЧЕННОЙ ПЕРЕЛАЧЕ В ОСНОВНОЙ КОРОБКЕ

Износ резины впускного клапана Неплотное прилегание толкателя к впускному клапану Заменить клапан

Заменить неисправные детали

КОРОБКИ ПЕРЕДАЧ СЕМЕЙСТВА ЯМЗ-236

Коробки передач семейства ЯМЗ-236 — механические, трехходовые, пятиступенчатые (пять передач для движения вперед и одна — назад) с синхронизаторами на 2–3 и 4–5 передачах.

В зависимости от назначения коробки передач выпускаются в модификациях: ЯМЗ-236П, ЯМЗ-236ПО, ЯМЗ-236Н, ЯМЗ-236Л, ЯМЗ-236У, ЯМЗ-236УО. Кроме того, каждая модификация может иметь различные комплектации.

Конструктивные отличия модификаций и комплектаций коробок передач см. раздел «Конструктивные особенности».

Передача	Передаточные
Передача	числа
1	5,26
2	2,90
3	1,52
4	1,00
5	0,664
Задний ход	5,48

ПЕРЕДАТОЧНЫЕ ЧИСЛА

УСТРОЙСТВО И РАБОТА

Первичный вал 2 (рис. 119) коробки передач установлен на двух шариковых подшипниках. Передний подшипник запрессован в расточку коленчатого вала двигателя. Полость подшипника при сборке заполнена смазкой Литол-24 по ГОСТ 21150–87 и уплотнена манжетой. Задний подшипник с помощью стопорного кольца закреплен от осевых перемещений в передней стенке картера коробки передач и крышке подшипника.

Вторичный вал 14 передним концом опирается на роликовый подшипник, помещенный в гнезде первичного вала. Задний конец вторичного вала опирается на шарикоподшипник, закрепленный стопорным кольцом в стенке картера и крышке. На шлицах заднего конца вторичного вала установлен фланец 16 крепления карданного вала автомобиля.

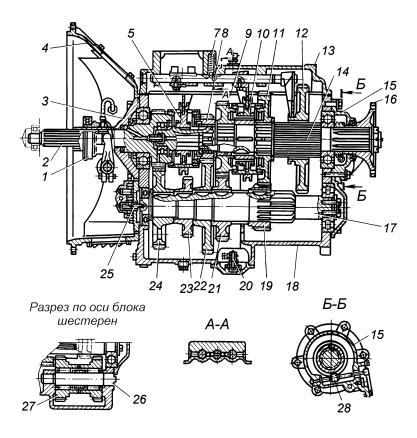


Рис. 119. Коробка передач ЯМЗ-236П:

1 — муфта выключения сцепления; 2 — первичный вал; 3, 15 — крышки подшипников; 4 — картер сцепления; 5, 10 — синхронизаторы; 7 — шарик фиксатора; 8, 22 — шестерни пятой передачи; 9, 21 — шестерни третьей передачи; 11, 19 — шестерни второй передачи; 12 — шестерня первой передачи и заднего хода; 13 — верхняя крышка; 14 — вторичный вал; 16 — фланец; 17 —промежуточный вал с шестерней первой передачи; 18 — картер коробки передач; 20 — заборник масляного насоса с магнитом; 23 — шестерня отбора мощности; 24 — шестерня привода промежуточного вала; 25 — масляный насос; 26 — ось блока шестерен заднего хода; 27 — блок шестерен заднего хода; 28 — шестерня привода спидометра.

Промежуточный вал 17 установлен на двух роликовых подшипниках. Передний конец промежуточного вала имеет паз для привода масляного насоса. Блок шестерен заднего хода 27 вращается на двух роликовыми подшипниках, установленных на неподвижной оси 26.

Все шестерни коробки передач имеют спиральные зубья, кроме прямозубых шестерен первой передачи, блока заднего хода и шестерни отбора мощности. Шестерни второй, третьей и пятой передач и пара шестерен привода промежуточного вала находятся в постоянном зацеплении.

Шестерни второй, третьей и пятой передач вторичного вала установлены на стальных подшипниках скольжения, имеющих специальные конфигурацию, покрытие и пропитку.

Безударное включение второй, третьей, четвертой и пятой передач обеспечивается двумя синхронизаторами 6 и 10. позволяет произвести Синхронизатор инерционного типа зацепление зубчатой муфты каретки с зубчатой муфтой шестерни только при уравнении угловых скоростей вращения шестерни и Уравнение скоростей производится фрикционной пары – конусного кольца синхронизатора и конуса на шестерне. Включение первой передачи и заднего хода шестерни осуществляется перемещением 12 по шлицам вторичного вала до полного зацепления с соответствующей шестерней.

верхней крышке коробки размещен трехходовой В механизм переключения передач. Ha штоках механизма переключения закреплены вилки, которые при перемещении штоков перемещают каретки синхронизаторов или шестерню первой передачи и заднего хода. Штоки в нужном положении удерживаются шариковыми фиксаторами 7. Для предохранения от случайного включения одновременно двух передач имеется блокирующее устройство (вид А-А), состоящее из штифта и двух пар шариков, при движении какого-либо штока два других запираются шариками, которые входят в соответствующие канавки на штоках. Для предохранения от ошибочного включения заднего хода и первой передачи служит пружинный предохранитель 32. Чтобы включить задний ход или первую передачу, нужно преодолеть дополнительно усилие пружины предохранителя.

Управление коробкой передач ЯМЗ-236H осуществляется рычагом качающегося типа по схеме (рис. 120).

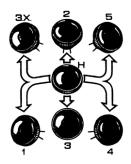


Рис. 120. Схема положений рычага переключения передач ЯМЗ-236H

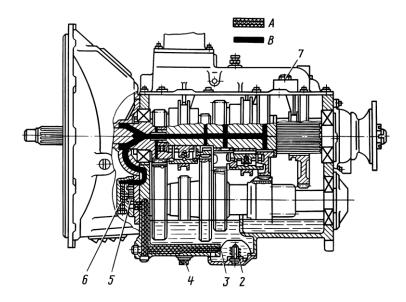


Рис. 121. Схема системы смазки:

A — засасывание масла; B — высокое давление; 2 — магнит маслозаборника; 3 — сетка маслозаборника; 4 — сливная пробка; 5 — масляный насос; 6 — редукционный клапан; 7 — пробка заливного отверстия

Через шестерню 23 (рис. 119) можно производить отбор мощности для привода дополнительных агрегатов. Механизм отбора мощности крепится к одному из фланцев с люками, находящимися с обеих сторон картера коробки передач.

Коробка передач оборудована механизмом привода спидометра, расположенным в крышке 15 заднего подшипника вторичного вала (вид Б–Б).

Система смазки коробки передач — смешанная (рис. 121). Под давлением смазываются подшипники скольжения шестерен вторичного вала. Подшипники качения, зубчатые зацепления и механизм переключения передач смазываются разбрызгиванием.

Масло засасывается из масляной ванны картера через заборник и систему каналов шестеренчатым масляным насосом 5, установленным на передней стенке картера коробки передач и приводимым от промежуточного вала. Маслозаборник закрыт сеткой 3 и имеет постоянный магнит 2 для улавливания мелких металлических частиц, находящихся в масле.

Масляный насос снабжен редукционным клапаном 6, отрегулированным на давление 80 ± 10 кПа $(0.8\pm0.1~{\rm krc/cm^2})$. В коробку передач масло заливается через отверстие в верхней крышке, закрытое пробкой 1 (рис. 121), до уровня контрольного отверстия 3, находящегося с левой стороны картера. Заправочная емкость системы смазки коробки передач $5.5~{\rm J}$.

Внутренняя полость картера коробки передач с помощью сапуна сообщается с атмосферой.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

При техническом обслуживании проверять крепление коробки передач к двигателю и состояние ее подвески, поддерживать нормальный уровень масла в коробке и своевременно заменять его при TO-2.

Уровень масла в картере коробки передач должен быть не ниже нижней кромки контрольного отверстия 3 (рис. 122). Масло из картера коробки передач сливать в горячем состоянии через сливное отверстие, закрытое пробкой 4. После слива масла очистить магнит сливной пробки. После слива масла отвернуть болты и снять крышку 2 заборника масляного насоса, очистить и промыть сетку, после чего крышку установить на место. При установке крышки заборника обратить внимание на то, чтобы не перекрыть масляную магистраль крышкой или ее прокладкой.

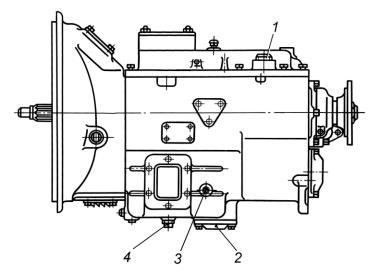


Рис. 122. Пробки коробки передач ЯМЗ-236П:

- 1 маслозаливное отверстие; 2 крышка заборника масляного насоса;
- 3 контрольное отверстие уровня масла; 4 сливное отверстие

Коробку передач промывать индустриальным маслом И-12A или И-20A по ГОСТ 20199 – 88; 2,5 – 3 л его залить в картер коробки, установить рычаг переключения передач в нейтральное положение, пустить двигатель на 1...8 минут, после чего остановить его, слить промывочное масло и залить свежее. Категорически запрещается промывать коробку передач керосином или дизельным топливом во избежание отказа в работе масляного насоса из-за недостаточного разрежения на всасывании и, как следствие, выхода из строя коробки передач. В случае полной переборки коробки передач масляный насос перед установкой смазать применяемым в коробке передач маслом.

При буксировке автомобиля с неработающим двигателем первичный и промежуточный валы коробки передач не вращаются, масляный насос в этом случае не работает и не подает смазку в подшипники шестерен вторичного вала и на конусные поверхности синхронизаторов, что вызовет задиры поверхностей скольжения, износ колец синхронизаторов и ведет к выходу из строя всей коробки передач. Для проведения буксировки выключить сцепление и включить прямую (четвертую) передачу в коробке передач или отсоединить коробку от трансмиссии.

Буксировка автомобиля на расстояние свыше 20 км без отсоединения карданного вала или выжима сцепления с включенной прямой передачей не допускается.

Допускается буксировка автомобиля с включенной нейтральной передачей в раздаточной коробке, если это разрешено Руководством эксплуатации транспортного ПО средства, без применения перечисленных выше операций.

Для предупреждения преждевременного износа трущихся пар рекомендуется перед пуском двигателя при температуре окружающей среды ниже минус 30°C подогреть коробку передач. Если это не представляется возможным, то на время длительной остановки двигателя масло из картера слить, а перед пуском двигателя это масло подогреть и залить в коробку через отверстие в верхней крышке.

Для плавного и легкого переключения передач предохранения зубьев промежуточного вала и шестерыми первой передачи и заднего хода от торцевого износа, а также предохранения колец синхронизаторов от износа правильно регулировать сцепление и не допускать его «ведения».

ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ КОРОБКИ ПЕРЕДАЧ И СПОСОБЫ ИХ УСТРАНЕНИЯ

Неисправность	Способ устранения			
ПОВЫШЕННЫЙ НАГРЕВ КОРОБКИ ПЕРЕДАЧ ПРИ РАБОТЕ				
Недостаточно количества масла в картере	Убедиться в наличии достаточного количества масла в картере и, при необходимости, долить			
Неисправный масляный насос	масло Отремонтировать насос или заменить исправным			
НЕВКЛЮЧЕНИЕ ИЛИ ЗАТРУДНЁННОЕ ВКЛЮЧЕНИЕ ВТОРОЙ. ТРЕТЬЕЙ. ЧЕТВЕРТОЙ И ПЯТОЙ ПЕРЕЛАЧ				

хронизатора Неполное выключение спепления (сцепление "ведет")

Износ или повреждение син- Заменить неисправный синхронизатор

> Отрегулировать свободный ход педали сцепления или, если дефект является следствием неисправности деталей сцепления, заменить повреждённые детали

Неисправность	Способ устранения			
НЕ ВКЛЮЧЕНИЕ И				
СО СКРЕЖЕТОМ ПЕРВОЙ ПЕРЕДАЧИ				
Неполное выключение сцеп-	Отрегулировать свободный ход			
ления (сцепление "ведет")	педали сцепления или, если де-			
	фект является следствием неис-			
	правности деталей сцепления,			
	заменить повреждённые детали			
Неполное зацепление зубьев	Отрегулировать механизм упра-			
шестерен	вления переключением передач			
	таким образом, чтобы тяги меха-			
	низма обеспечивали полное			
	включение передач в коробке			
ПОВЫШЕННЫЙ ШУМ ПРИ І	РАБОТЕ КОРОБКИ ПЕРЕДАЧ			
Недостаточно масла в коробке	Залить масло до уровня кон-			
передач	трольного отверстия			
Износ подшипников валов ко-	Заменить неисправные подшип-			
робки передач	ники			
Повышенный износ зубьев	Заменить изношенные шестерни			
шестерен				
Перекос осей первичного и вто-	Проверить затяжку и при			
ричного валов из-за ослабления	необходимости подтянуть болты			
затяжки болтов крепления картера	крепления картера сцепления к			
сцепления к картеру маховика и	картеру маховика и болты			
болтов крепления задней опоры	крепления задней опоры коробки			
коробки передач	передач			
САМОПРОИЗВОЛЬНОЕ В				
при движении				
Неравномерный износ зубьев	Заменить неисправные детали			
зубчатых муфт				
Повышенный износ подшипников	_			
валов коробки передач	пники			
Неисправности фиксаторов штоков	Заменить неисправные детали			
механизма переключения передач	<u> </u>			
ТЕЧЬ МАСЛА ИЗ К				
Повышенный уровень масла в	r · · r			
коробке передач	контрольному отверстию в			
	картере коробки			
Износ или потеря эластичности	*			
манжет коробки передач	манжеты			
Нарушение герметичности по	F			
плоскостям соединений коробки	крепежные детали			
передач				

КОРОБКИ ПЕРЕДАЧ ТИПА ЯМЗ-2361 И ЯМЗ-2381

Коробки передач типа ЯМЗ-2361 и ЯМЗ-2381 являются модернизированной модификацией коробок передач соответственно типа ЯМЗ-236 и ЯМЗ-238ВМ.

На коробках передач типа ЯМЗ-2361 и ЯМЗ-2381 внедрен усиленный первичный вал за счет увеличения диаметра вала, изменено уплотнение первичного вала и система подачи смазки от масляного насоса в крышку первичного вала. Подвод смазки осуществляется по масляному трубопроводу от масляного насоса в крышку первичного вала.

ОСНОВНЫЕ МОДЕЛИ КОРОБОК ПЕРЕДАЧ

Модель коробки передач		Продугрудский	Продприятия	
До изменения	После изменения	Предприятие- изготовитель	Предприятие- потребитель	
ЯМЗ-236П4	ЯМЗ-2361-02*		РУП «МАЗ»	
ЯМЗ-236Н3	ЯМЗ-2361-30*	OAO	ХК «АвтоКрАЗ»	
ЯМЗ-236У2	ЯМЗ-2361-50*	«Автодизель»	ОАО «АЗ«Урал»	
ЯМЗ-236Л1	ЯМЗ-2361-81*	(d IBTOGIISOIIB)	ООО «Ликин- ский автобус»	
ЯМЗ-238ВМ	ЯМЗ-2381-02*		РУП «МАЗ»	
ЯМЗ-238ВК	ЯМЗ-2381-31*	OAO «TM3»	ХК «АвтоКрАЗ»	
ЯМЗ-238ВУ	ЯМЗ-2381-50*		ОАО «АЗ«Урал»	

Примечание:

* - Коробка передач в сборе в комплектности со сцеплением диафрагменного типа взаимозаменяема при замене ведомого диска сцепления 182.1601130 на 182.1601130-10 с увеличенным внутренним диаметром ступицы и муфты выключения сцепления 183.1601180-01 на 184.1601180-31.

КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ

Наименование и обозначение деталей коробок передач в комплектности со сцеплением диафрагменного типа до и после изменения КП приводятся в таблице.

Haynsayanayya	До изменения		После изменения	
Наименование детали, узла КП	Обозначение детали	Кол.	Обозначение детали	Кол.
Вал первичный с трубкой в сборе	236Н-1701027-Б	1	2381.1701025*	1
Крышка первичного вала	236-1701040-A	1	2381.1701040	1
Насос масляный	236-1704010-A	1	336.1704010-10	1
Прокладка	236-1704017-A2	1	_	_
Кольцо уплотнительное	_	-	336.1704019	1
Трубопровод	ı	_	336.1704300	1
Манжета	236-1701230	-	201.1701230	1
Болт M16x1,5-6qx37	_	-	310264-П29	2
Прокладка	-	_	201.1015624	4
Кольцо упорное		_	201.1721413	3

Примечание:

* - Вал первичный с задним подшипником и трубкой в сборе.

Для переоборудования коробок передач типа ЯМЗ-236 в коробки передач соответственно типа ЯМЗ-2361 создан комплект запасных частей 2361.1700200, включающий необходимые для замены детали и узлы.

Комплект запасных частей 2361.1700200 входит в состав номенклатуры запасных частей OAO «Автодизель».

В раздел «Техническое обслуживание коробки передач» вводится дополнительно следующее:

ВНИМАНИЕ! НЕ ДОПУСКАЕТСЯ ВКЛЮЧЕНИЕ ЗАДНЕГО ХОДА И ПЕРВОЙ ПЕРЕДАЧИ ПРИ ДВИЖУЩЕМСЯ АВТОМОБИЛЕ.

Задний ход и первую передачу включать лишь при частоте вращения коленчатого вала, соответствующей минимальным оборотам холостого хода двигателя с задержкой не менее 10 секунд после выжима педали сцепления.

Включение без задержки приводит к скрежету и повреждению зубьев муфты включения и шестерён.

Если при соблюдении этих правил включения заднего хода и первой передачи происходит со скрежетом, это свидетельствует о необходимости проверки работы систем сцепления (см. подраздел «Эксплуатация сцепления»).

ГЕРМЕТИЗИРУЮЩИЕ СОСТАВЫ

В настоящее время широкое применение в качестве уплотняющего материала на силовых агрегатах ЯМЗ получили герметизирующие составы (герметики) российского и импортного производства.

Наименование соединения или узла	Марка герметика	
	По чертежу	Возможная замена
Стыки крышки блока верхней, крышки шестерен распределения с блоком цилиндров и стыков прокладки масляного картера	Локтайт Ультра Блэк	Перматекс Ультра Блэк
Плоскости стяжных горизонтальных болтов крышек коренных опор блока цилиндров при установке без шайб	Локтайт 518	Анатерм-505, Анатерм-501М
Резьбовые соединения	Унигерм-9	Унигерм-10, Анатерм-111
Пробки горизонтального и верти- кального масляного каналов блока цилиндров	Анатерм-5МД	Анатерм-114, Анатерм-8К
Верхний посадочный пояс гильзы цилиндра с опорной поверхностью выточки блока цилиндров	Локтайт 5910	Анатерм-505Д

Примечание:

Герметик наносится на предварительно очищенную и обезжиренную поверхность.

ВНИМАНИЕ: ГЕРМЕТИКИ ОТНОСЯТСЯ К ПОЖАРООПАСНЫМ ВЕЩЕСТВАМ. ПРИ РАБОТЕ С НИМИ СОБЛЮДАТЬ ТЕХНИКУ БЕЗОПАСНОСТИ И ОСТОРОЖНОСТЬ. ПОМЕЩЕНИЕ, ГДЕ ПРОВОДЯТСЯ РАБОТЫ, ДОЛЖНО ИМЕТЬ ЭФФЕКТИВНЫЙ ВОЗДУХООБМЕН.

ГАРАНТИИ ЗАВОДА И ПОРЯДОК ПРЕДЪЯВЛЕНИЯ РЕКЛАМАЦИЙ

УВАЖАЕМЫЙ ВЛАДЕЛЕЦ! ОАО «АВТОДИЗЕЛЬ» (ЯМЗ) (ДАЛЕЕ ИЗГОТОВИТЕЛЬ) ВЫРАЖАЕТ БЛАГОДАРНОСТЬ ЗА ВАШ ВЫБОР И ГАРАНТИРУЕТ ВЫСОКОЕ КАЧЕСТВО И БЕЗУПРЕЧНОЕ ФУНКЦИ-ОНИРОВАНИЕ ПРИОБРЕТЕННОГО ВАМИ СИЛОВОГО АГРЕГАТА/ДВИГАТЕЛЯ ПРИ СОБЛЮДЕНИИ ПРАВИЛ ЕГО ЭКСПЛУАТАЦИИ, ИЗЛОЖЕННЫХ В НАСТОЯЩЕМ РУКОВОДСТВЕ

Гарантийные обязательства ОАО «Автодизель» (ЯМЗ) на стадии эксплуатации силового агрегата/двигателя исполняет ООО «Силовые агрегаты - Группа Γ АЗ».

ОБЛАСТЬ ПРИМЕНЕНИЯ ГАРАНТИИ

Настоящая гарантия действует в отношении силовых агрегатов/двигателей производства ОАО «Автодизель» (ЯМЗ), зарегистрированных в установленном порядке и находящихся в эксплуатации на территории Российской Федерации (РФ), странах зарубежья, проданных физическим и юридическим лицам и независимо от принадлежности торгующей организации и места жительства владельца.

Предметом гарантии является соответствие силового агрегата/ двигателя, в комплектации, поставленной изготовителем, обязательным требованиям к качеству, предусмотренным законодательством РФ и договором, и его пригодность для использования по назначению в соответствии с заявленными характеристиками в настоящем руководстве по эксплуатации.

В течение гарантийных срока эксплуатации и наработки ООО «Силовые агрегаты - Группа ГАЗ» обязуется устранять неисправности, возникшие на стадии эксплуатации силового агрегата/двигателя, при условии, что неисправности не возникли вследствие нарушения потребителем правил хранения, эксплуатации и обслуживания силового агрегата/двигателя, оговоренные в настоящем руководстве по эксплуатации, действий третьих лиц и непреодолимой силы (пожара, природной катастрофы и т.д.).

Гарантийные обязательства действительны при своевременном и обязательном выполнении планового технического обслуживания на сервисных центрах, аттестованных ООО «Силовые агрегаты - Группа ГАЗ» (далее СЦ).

Примечание: Список сервисных центров приведен в сервисной книжке изделия, а также, размещен на сайте www.service.powertrain.ru или www.gazgroup.ru.

Проведение технического обслуживания подтверждается соответствующими записями в сервисной книжке (формуляре, сервисном талоне) изделия и двигателя, за исключением случаев, когда сервисная книжка (формуляр, сервисный талон) не предусмотрена комплектом поставки изделия или двигателя. При отсутствии в регионе эксплуатации техники указанных СЦ, необходимо письменно согласовать с ООО «Силовые агрегаты - Группа ГАЗ» порядок обслуживания силового агрегата/двигателя.

Устранение неисправностей силового агрегата/двигателя, возникших по вине изготовителя в период гарантии, выполняется за счет ООО «Силовые агрегаты - группа ГАЗ». Устранение неисправностей, возникших в результате нарушений потребителем правил хранения, эксплуатации, обязательного технического обслуживания, а также неисправностей, устраненных методом замены деталей прикладываемых в ЗИП двигателя, осуществляется за счет потребителя. ВНИМАНИЕ! УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ В ГАРАНТИЙНЫЙ ПЕРИОД МЕТОДОМ ЗАМЕНЫ ДЕТАЛЕЙ, ПРИКЛАДЫВАЕМЫХ В ЗИП ДВИГАТЕЛЯ, НЕОБХОДИМО ВЫПОЛНЯТЬ НА СЦ.

Пополнение и замена расходуемых эксплуатационных материалов (масел, охлаждающих жидкостей и др.) за счет гарантии производится только в том случае, если это связано с проведением соответствующего гарантийного ремонта.

СРОК ДЕЙСТВИЯ ГАРАНТИИ НА СИЛОВОЙ АГРЕГАТ/ДВИГАТЕЛЬ

Гарантийный срок на новый силовой агрегат/двигатель установлен изготовителем и составляет:

• на силовой агрегат/двигатель, поставляемый на комплектацию - равен гарантийному сроку и наработке изделия, на которое он установлен.

Силовой агрегат/двигатель должен быть установлен на изделие не позднее, чем через шесть месяцев со дня отгрузки с ОАО «Автодизель» (ЯМЗ). Продолжительность нахождения силового агрегата/двигателя в составе автомобиля или другого изделия на каждом последующем заводе комплектации не должна превышать трёх месяцев, при этом должны соблюдаться правила хранения, консервации и расконсервации, изложенные в настоящем руководстве по эксплуатации. Гарантийные срок эксплуатации и наработка силового агрегата/двигателя исчисляются с момента исчисления гарантийных срока эксплуатации и наработки изделия, на которое он установлен.

- на силовые агрегаты/двигатели, предназначенные для Министерства обороны (МО) РФ, гарантийный срок эксплуатации и наработки устанавливается в соответствии с гарантийным сроком эксплуатации и наработки конечного изделия, но не более 10 лет. Для двигателей, предназначенных для поставки в запасные части для МО РФ и прошедших полную консервацию гарантийный срок эксплуатации исчисляется со дня установки на изделие при условии, что с момента консервации двигателя прошло не более 5 лет.
- на силовой агрегат/двигатель, поставляемый в запасные части, гарантийный срок эксплуатации устанавливается равным 12 месяцам, при условии, что силовой агрегат/двигатель, принят техническим контролем ОАО «Автодизель» (ЯМЗ) и/или ООО «Силовые агрегаты Группа ГАЗ», имеет в сопроводительном документе (паспорте) его штамп, владельцем соблюдены требования в части гарантийного срока хранения. Гарантийный срок эксплуатации силового агрегата/двигателя, поставляемого в запасные части, исчисляется с даты ввода в эксплуатацию или с даты установки на изделие (согласно отметки в подтверждающем документе). В случае невозможности определить дату ввода двигателя в эксплуатацию и дату установки на изделие, гарантийный срок исчисляется с даты продажи двигателя конечному потребителю.

Работы по замене или установке силового агрегата/двигателя на изделие либо взамен аналогичного по модели и модификации, либо предназначенного для использования в составе изделия, соответствующей модели и модификации, должны быть произведены с сохранением моторных систем (без модернизации) на СЦ ООО «Силовые агрегаты - Группа ГАЗ». В случае невозможности приобретения аналогичного по модели и модификации силового агрегата/двигателя, для сохранения гарантии необходимо письменно согласовать с ООО «Силовые агрегаты - Группа ГАЗ» модель и комплектацию устанавливаемого силового агрегата/двигателя.

Гарантийный срок хранения на силовые агрегаты/двигатели, поставляемые в запасные части, исчисляется с даты изготовления или с даты консервации ООО «Силовые агрегаты - Группа ГАЗ» и/или ОАО «Автодизель» раздела «Консервация» паспорта двигателя, и составляет:

- на прошедшие наружную консервацию в течение 6 месяцев;
- на прошедшие полную консервацию в течение 12 месяцев.

По истечении указанных сроков необходимо ввести силовой агрегат/двигатель в эксплуатацию, либо провести его переконсер-

вацию в соответствии с разделом «Консервация и расконсервация» настоящего руководства по эксплуатации.

На все ремонтные работы, проведенные в рамках гарантии, а так же на детали, узлы и агрегаты, замененные при выполнении указанных работ, действует гарантия до окончания срока действия гарантии на новый двигатель.

Гарантийные обязательства изготовителя утрачивают силу, если имеет место одно из следующих обстоятельств:

- применение силового агрегата/двигателя на изделиях, его установка на которые не согласована с изготовителем OAO «Автодизель» (ЯМЗ);
- эксплуатация силового агрегата/двигателя с нарушением указаний настоящего руководства по эксплуатации;
- не выполнение или несвоевременное или не полное выполнение планового технического обслуживания на СЦ в объемах и в сроки, указанные в настоящем руководстве по эксплуатации и «Сервисной книжке»;
- самостоятельная установка, замена силового агрегата/двигателя, самостоятельный демонтаж, разборка и ремонт деталей, узлов, агрегатов или силового агрегата/двигателя, включая изменение программного обеспечения, заводских настроек, параметров электронных блоков;
- внесения в силовой агрегат/двигатель конструктивных изменений без согласования с изготовителем OAO «Автодизель» (ЯМЗ);
 - повреждения заводской пломбировки узлов и агрегатов;
- эксплуатация силового агрегата/двигателя при выявленных несоответствиях, заявленным в Руководстве по эксплуатации требованиям и характеристикам;
- ullet выявленное несоответствие возникло в связи с проведением ремонта или ТО не на СЦ, аттестованном ООО «Силовые агрегаты Группа ГАЗ».

Гарантия не распространяется на:

- силовой агрегат/двигатель, изготовленный не на ОАО «Автодизель» (ЯМЗ);
- неисправности, возникшие в результате ненадлежащего проведения ТО (нарушении требований Руководства по эксплуатации силового агрегата/двигателя) или ремонта. Претензии предъявляются к сервисному центру, проводившему обслуживание или ремонт;
- неисправности в результате применения не рекомендованных изготовителем эксплуатационных материалов (масел, топлива,

охлаждающих жидкостей и т.д.) или в результате эксплуатации при недостатке эксплуатационных материалов (охлаждающей жидкости, масла и т.д.) в связи с несвоевременным обнаружением утечки или повышенного расхода;

- повреждения, возникшие в результате дорожно-транспортного происшествия, ударов, царапин, попадания камней и других твердых предметов, а так же действия третьих лиц;
- расходные материалы, в том числе смазочные материалы и эксплуатационные жидкости всех систем двигателя, заменяемые в процессе проведения ТО или по мере необходимости.

КАК ВОСПОЛЬЗОВАТЬСЯ ГАРАНТИЕЙ

При обнаружении признаков неисправности владельцу необходимо:

- Немедленно прекратить дальнейшую эксплуатацию силового агрегата/двигателя*.
- Без задержек обратиться к ближайшему дилеру/СЦ ООО "Силовые агрегаты - Группа ГАЗ с гарантийной рекламацией, в которой необходимо указать:
 - а) полное наименование организации, эксплуатирующей изделие;
- б) почтовый адрес (область, район, почтовое отделение), контактный телефон, название ближайшей железнодорожной станции или пристани, код грузополучателя;
- в) завод изготовитель, тип и марку изделия, номер шасси, на которое установлен двигатель;
- г) модель и номер силового агрегата (двигателя), номер топливного насоса, номер коробки передач, пробег изделия в километрах или наработку в часах;
- д) условия выявления и возникновения отказа, характер, внешнее проявление, диагностические параметры несоответствия или отказа;
 - е) используемые эксплуатационные материалы;
 - ж) дату получения изделия, силового агрегата (двигателя).
 - Предъявить:
- а) «Сервисную книжку» (гарантийный талон, формуляр или документ их заменяющий), правильно заполненную и содержащую всю информацию о технике и о проведенных технических обслуживаниях;
- б) «Свидетельство о регистрации транспортного средства» и/или другие документы, подтверждающие правомочность потребителя предъявлять гарантийную рекламацию;
- в) гарантийное письмо, в котором потребитель обязуется возместить все расходы дилера/СЦ в случае признания рекламации необоснованной.

• Предъявить силовой агрегат/двигатель в составе техники для подтверждения наличия неисправности, попадающей под условия предоставления гарантии. При невозможности предъявить изделие, на которое установлен силовой агрегат/двигатель, необходимо обратиться к ближайшему дилеру/СЦ ООО "Силовые агрегаты - Группа ГАЗ" для организации ремонта на месте, для чего выслать от имени владельца (собственника) изделия телеграфное или почтовое извещение/рекламацию.

При получении извещения/рекламации дилер или СЦ сообщает потребителю в однодневный срок порядок рассмотрения рекламации.

Дилер или СЦ совместно с потребителем рассматривает рекламацию и оформляет акт-рекламацию. Рассмотрение рекламации (осмотр, демонтаж, разборка и т.п.), а также выезд специалиста по месту нахождения потребителя, проводится для потребителя бесплатно только в случае признания рекламации обоснованной.

В случае принятия рекламации по гарантии, дилер или СЦ восстанавливает силовой агрегат, двигатель в минимальный разумный срок. Потребитель подписывает акт-рекламацию от имени владельца (собственника).

При возникновении разногласий между дилером/СЦ (или представителями ООО «Силовые агрегаты - Группа ГАЗ») и потребителем, в акте рекламации отражается особое мнение несогласной стороны и акт подписывается обеими сторонами. По запросу ООО «Силовые агрегаты - Группа ГАЗ» дилер или СЦ направляет запрашиваемые детали или узлы двигателя на исследование, по результатам которого принимается окончательное решение. Высылаемые на исследования детали и сборочные единицы собственнику не возвращаются только в случае их исследования разрушающим методом или признании рекламации обоснованной.

*Примечание: Все риски, и затраты, связанные с неисправностями или поломками силового агрегата/двигателя в результате использования технически неисправного силового агрегата/двигателя, несет владелец.

ЗАКЛЮЧЕНИЕ

В случае отсутствия в Вашем регионе эксплуатации официального дилера ООО «Силовые агрегаты - Группа ГАЗ» или СЦ, Вы должны выслать телеграфное или почтовое извещение (рекламацию) от имени владельца (собственника) изделия в Управление по гарантийному и сервисному обслуживанию ООО «Силовые агрегаты - Группа ГАЗ» для рассмотрения рекламации.

Порядок предъявления и удовлетворения рекламаций на продукцию, используемую в составе военной техники, осуществляется согласно ГОСТ РВ 15.703-2005.

Ваши предложения по совершенствованию сервисного сопровождения продукции, возникшие в процессе эксплуатации и рассмотрения отказов продукции вопросы, разногласия и замечания направлять по адресу:

150040, г. Ярославль, пр. Октября, 75, ООО «Силовые агрегаты - Группа ГАЗ», Управление по гарантийному и сервисному обслуживанию. Факс (4852) 588128, 586888.

УТИЛИЗАЦИЯ

Под утилизацией понимается процесс уничтожения или ликвидации машин и оборудования путем разбора их на части, переработки, захоронения и другими способами, включая подготовительные процессы, предваряющие процесс утилизации машин и оборудования.

При проведении утилизации необходимо соблюдать требования техники безопасности при слесарно-механических работах. Персонал должен иметь необходимую квалификацию и пройти соответствующее обучение.

УТИЛИЗАЦИЯ СОСТАВНЫХ ЧАСТЕЙ ИЗДЕЛИЯ ПРИ ПРОВЕДЕНИИ ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ.

Утилизации подлежат: отработанное масло, дизельное топливо, бензин, растворители, используемые в соответствии с требованиями «Руководства по эксплуатации», а также фильтрующие элементы масла и топлива, вышедшие из строя ремни, прокладки, ветошь.

Отработанное масло, использованные бензин, дизельное топливо, растворители собираются в предназначенные для этих целей емкости с последующей отправкой для переработки на завод. Фильтрующие элементы — снимаются крышки, бумага режется по образующей. Крышки, сердечник сдаются в металлолом, бумага прессуется и отправляется на свалку. Использованная ветошь, снятые резино - технические изделия, паронитовые и асбестовые прокладки прессуются и отправляются на свалку.

УТИЛИЗАЦИЯ ИЗДЕЛИЯ ПРИ СПИСАНИИ

При отправки изделия на утилизацию, оно должно быть помыто снаружи. Изделия, загрязненные в процессе эксплуатации токсическими веществами, радиоактивными аэрозолями при выведении их из использования для последующей утилизации, должны пройти обязательную обработку по обезвреживанию специальными растворами (составом) в зависимости от токсических физико-химических свойств, вредных веществ в соответствии с действующими санитарными нормами.

Масло, охлаждающая жидкость, топливо должны быть слиты. Все детали, узлы, агрегаты, расположенные снаружи изделия должны быть надежно закреплены. Штатные приспособления для подъема должны быть в соответствии с технической документацией.

Основным методом утилизации является механическая разборка. Изделие полностью подвергается разборке, после чего производится рассортировка деталей в зависимости от материала в соответствии со сведениями содержания цветных металлов и сплавов, приведенных в приложении Γ руководства по эксплуатации.

Все неметаллическое прессуется и отправляется на свалку. Других требований по утилизации силовых агрегатов, двигателей, сцеплений и коробок передач не предъявляется.

В местах проведения утилизации должна находиться необходимая документация, в т.ч. и по технике безопасности.

ПРИЛОЖЕНИЯ

приложение а

КОМПЛЕКТ ПОСТАВКИ

В комплект поставки силового агрегата, двигателя, идущего на комплектацию изделия, входят эксплуатационные документы, запасные части, инструмент и принадлежности (ЗИП), приведенные в таблице.

Наименование			
ЭКСПЛУАТАЦИОННЫЕ ДОКУМЕНТЫ:			
1. Паспорт двигателя	1		
2. Руководство по эксплуатации	1		
3. Ведомость эксплуатационных документов	1		
4. Пакет для паспорта	1		
5. Пакет для технической документации	1		
ЗАПАСНЫЕ ЧАСТИ, ИНСТРУМЕНТ И ПРИНАДЛЕЖНОСТ	И (ЗИП):		
1. Инструмент водителя и приспособления (комплект):	1		
 Ключ торцовый 19 			
– Вороток			
– Ключ торцовый 14	1		
– Вороток	1		
 Ключ торцовый 12 	1		
– Вороток			
 Ключ торцовый 10 			
– Ключ торцовый 24			
– Щуп в сборе			
 Съемник форсунки 			
 Сумка для инструмента 			
2. Комплект запасных частей гарантийный одиночный			
3. Изделия, используемые при монтаже двигателя на			
машину			

К поставляемым в запасные части двигателям, силовым агрегатам инструмент и приспособления не прикладываются.

Комплект поставки может быть изменен предприятием-изготовителем по согласованию с предприятием - потребителем.

ПРИЛОЖЕНИЕ Б

КОНСЕРВАЦИЯ И РАСКОНСЕРВАЦИЯ СИЛОВОГО АГРЕГАТА/ДВИГАТЕЛЯ ПРИ ХРАНЕНИИ НА СКЛАДАХ

НАЗНАЧЕНИЕ КОНСЕРВАЦИИ

Консервация производится с целью предохранения от коррозии внутренних и наружных поверхностей силового агрегата/двигателя во время транспортировки и хранения на складе путем нанесения на эти поверхности защитной пленки ингибитора коррозии или упаковки.

Антикоррозийная обработка и упаковка обеспечивают хранение силового агрегата/двигателя в соответствии с настоящим разделом с момента отгрузки с завода, при условии хранения в законсервированном и упакованном виде в сухом, приспособленном для хранения помещении, без кислот, щелочей и других химикатов.

ТРЕБОВАНИЯ К УЧАСТКУ КОНСЕРВАЦИИ

Помещение, в котором производится консервация, должно удовлетворять следующим требованиям:

- должно быть сухим, хорошо вентилируемым, освещенным и отапливаемым;
 - относительная влажность воздуха не должна превышать 70%;
- температура должна поддерживаться не ниже 15°C. Резкого колебания температуры и влажности в течение суток не допускается;
- помещение должно содержаться в чистоте и быть изолировано от проникновения в него газов и паров, способных вызвать коррозию, категорически запрещается даже кратковременное хранение материалов, способных вызвать коррозию, как-то: кислот, щелочей, химикатов, аккумуляторов и других.

Помещение оборудуется: столом, обитым текстолитом, винипластом, линолеумом или алюминиевыми листами; нагревательной аппаратурой, обеспечивающей автоматическое поддержание заданной температуры смеси, предназначенной для консервации; посудой с крышками для хранения консервационных материалов; термометрами и психрометрами для контроля за температурой и влажностью в помещении.

Все операции по консервации двигателя выполнять на стенде для переборки двигателя, обеспечивающем плавный поворот двигателя на 360° вокруг своей оси.

Силовой агрегат, поступающий на консервацию, должен быть чистым и иметь температуру, равную или выше температуры помещения для консервации. Резкие колебания температуры при консервации не допускаются, так как это может привести к конденсации влаги на консервируемой поверхности.

В период консервации не производить такие работы, при которых консервируемая поверхность может загрязниться металлической, лакокрасочной и другой пылью.

Для консервации и упаковки двигателя на участке консервации должны иметься следующие материалы:

- моторное масло летнее одной из марок, указанных в разделе "Эксплуатационные материалы";
- защитная присадка-ингибитор (АКОР-1 ГОСТ 15171-78; Мифол по ТУ 0257-002-00148820-94; Сламин по ТУ 38.401-79-90. При приготовлении консервационных смесей присадку Сламин применять в количестве вдвое меньшем, чем указано в настоящем разделе);
 - Литол-24 ГОСТ 21150-87:
 - дизельное топливо ГОСТ 305-82;
 - консервационная смазка ПВК ГОСТ 19537-83;
 - консервационная смазка ЗЭС ТУ 38-101-474-74;
 - водонепроницаемая бумага ГОСТ 8828-89;
 - полиэтиленовая пленка толщиной 0,2 мм ГОСТ 10354-82;
 - рубероид ГОСТ 10923-82;
 - парафинированная бумага ГОСТ 9569-79;
 - полиакриламид ТУ 7.04.01-72;
 - двухромовокислый калий ГОСТ 2652-78;
 - сода кальцинированная ГОСТ 5100-85;
 - лента липкая полиэтиленовая ГОСТ 20477-86;
 - шпагат ГОСТ 17308-88;
 - уайт-спирит ГОСТ 3134-78.

Присутствие кислот и влаги в консервационных материалах не допускается. В случае присутствия в масле влаги ее удалить нагреванием масла закрытым пламенем до температуры 105–120°C до полного прекращения пенообразования. Из топлива влагу удалять отстаиванием.

Деревянные заглушки, пробки, планки, применяемые при операциях консервации, пропитать рабоче-консервационным маслом при температуре $105{\text --}120^{\circ}\text{C}$ до прекращения пенообразования.

ВНУТРЕННЯЯ КОНСЕРВАЦИЯ СИЛОВОГО АГРЕГАТА/ДВИГАТЕЛЯ

Внутренняя консервация двигателя состоит из консервации систем охлаждения, питания, смазки, внутренних поверхностей и цилиндров. Производить ее в следующем порядке:

1. Слить охлаждающую жидкость из двигателя, промыть систему охлаждения пассивирующим раствором и просушить продувкой сжатым воздухом до тех пор, пока через пароотводящее отверстие на правой водяной трубе не пойдет воздух без капель пассивирующего раствора.

Для приготовления **пассивирующего раствора**, отвешенное количество измельченных сухих кальцинированной соды $(3-7\ г/л)$ воды) и двухромовокислого калия $(0,2-0,4\ г/л)$ воды) растворить в небольшом количестве воды, нагретой до температуры $40-50^{\circ}$ С, содержимое вылить в емкость с соответствующим количеством воды, добавить полиакриламид $(0,05-0,07\ г/л)$ воды) и тщательно перемешать. При повторном использовании пассивирующий раствор профильтровать от шлама.

- 2. Укрепить двигатель на поворотном стенде и плотно закрыть отверстие впускного тракта двигателя.
- 3. Слить масло из картера двигателя, а также масло из топливного насоса высокого давления. Слив масла из топливного насоса высокого давления производить через отверстие для отвода масла. В случае консервации силового агрегата выполнить операции п.1 раздела «Внутренняя консервация коробки передач».
- 4. Провести консервацию системы питания, системы смазки и внутренних поверхностей двигателя.

Консервацию системы питания производить смесью дизельного топлива с защитной присадкой-ингибитором, консервацию системы смазки и внутренних поверхностей двигателя — рабоче-консервационным маслом.

Для приготовления консервационной смеси топлива отмерить требуемое количество дизельного топлива по ГОСТ 305 – 82 и требуемое количество защитной присадки-ингибитора (из расчета 15% от приготовляемого количества смеси), добавить к дизельному топливу подогретую до температуры 60–70°С присадку при интенсивном перемешивании топлива до получения однородной смеси. Смесь нагреть до температуры 70–80°С. Разогрев смеси не обязателен, если для ее приготовления используются средства механизации.

Универсальное рабоче-консервационное масло приготовлять путем добавления к товарным сортам дизельного масла защитной присадки-ингибитора. Для приготовления рабоче-консервационного масла:

- отмерить требуемое количество дизельного масла и нагреть его до температуры 70-80°C;
- отмерить требуемое количество присадки-ингибитора из расчета 10% от приготовляемого количества рабоче-консервационного масла;
- добавить к дизельному маслу подогретую до температуры 60–70°С присадку при интенсивном перемешивании масла до получения однородной смеси.

Однородность смеси определять отсутствием черных или темно-коричневых разводов на струе масла, стекающей с мешалки, а также отсутствием на дне и стенках емкости осадков или сгустков.

Для приготовления смеси можно применять маслозаправочный агрегат АЗ-1Э или баки-смесители конструкций БС-30, ППС-7500 и т. д. (в этом случае разогрев присадки необязателен). При приготовлении более 200 л смеси рекомендуется использовать маслозаправщик МЗ-51 или водомаслозаправщик ВМЗ-157В. Операцию смешения в этом случае производить, используя маслонасосы и систему подогрева масла.

ВНИМАНИЕ! КАТЕГОРИЧЕСКИ ЗАПРЕЩАЕТСЯ ЗАЩИТНУЮ ПРИСАДКУ-ИНГИБИТОР ЗАЛИВАТЬ НЕПОСРЕДСТВЕННО В КАРТЕР ДВИГАТЕЛЯ, ТОПЛИВНЫЙ НАСОС ВЫСОКОГО ДАВЛЕНИЯ И РЕГУЛЯТОР, ТАК КАК ИЗ-ЗА БОЛЬШОЙ ПРИЛИПАЕМОСТИ И ВЯЗКОСТИ ПРИСАДКА ОСТАНЕТСЯ НА СТЕНКАХ ЗАЛИВНОЙ ГОРЛОВИНЫ ИЛИ КАРТЕРА И НЕ СМЕШАЕТСЯ С МАСЛОМ.

Консервацию производить в следующем порядке:

- а) залить в отверстие для отвода масла из топливного насоса высокого давления рабоче-консервационное масло, имеющее температуру 70–80°С до уровня этого отверстия. Консервацию топливного насоса высокого давления производить из емкости, предназначенной для консервации цилиндров. Установить на место трубку отвода масла из топливного насоса;
- б) повернуть двигатель вниз головками цилиндров, вывернуть из сливного отверстия масляного картера пробку и залить рабоче-консервационное масло, имеющее температуру 70–80°С, в количестве, указанном в разделе «Техническая характеристика» настоящего руководства. В случае консервации силового агрегата выполнить операции п.2 раздела «Внутренняя консервация коробки передач». Установить двигатель вверх головками цилиндров;

- в) к топливоподкачивающему насосу, в месте подвода топлива, подсоединить трубку и погрузить ее в емкость с хорошо профильтрованным чистым дизельным топливом, имеющим температуру 70–80°С;
- г) прокачать ручным топливопрокачивающим насосом систему питания до тех пор, пока из наконечника сливной трубки не пойдет чистое, без пузырьков воздуха, топливо (скоба останова регулятора должна находиться в положении включенной подачи. На двигателях с электронной системой управления топливоподачей демонтировать колпак рейки, выдвинуть рейку до упора и зафиксировать ее в этом положении). Для прокачки можно использовать специальный насос;
- д) прокрутить коленчатый вал по часовой стрелке (если смотреть с переднего торца двигателя) не менее 6 оборотов (в случае консервации силового агрегата выполнить операции п.3 раздела «Внутренняя консервация коробки передач»), скоба регулятора при этом должна находиться в положении выключенной подачи;
- е) повернуть двигатель 2-3 раза вокруг горизонтальной оси в обе стороны. В случае консервации силового агрегата эту операцию допускается не выполнять.
- ж) отсоединить от топливоподкачивающего насоса трубку подвода топлива;
- з) слить рабочее-консервационное масло из топливного насоса (см. пункт 3), поставить на место трубку отвода масла;
- 5. Консервацию цилиндров производить в следующей последовательности:
 - а) снять соединительный патрубок впускных коллекторов;
- б) повернуть коленчатый вал так, чтобы впускные клапаны консервируемого цилиндра были открыты;
- в) залить в цилиндры через отверстия во впускных коллекторах с помощью гибкого шланга 60-70 мл рабоче-консервационного масла, имеющего температуру 70-80°С;

Примечание: Консервацию цилиндров производить рабочеконсервационным маслом из емкости, предназначенной только для консервации цилиндров;

- г) повторить операции «б» и «в» для всех цилиндров;
- д) прокрутить коленчатый вал по часовой стрелке (если смотреть с переднего торца двигателя) не менее 6 оборотов (в случае консервации силового агрегата выполнить операции п.3 раздела «Внутренняя консервация коробки передач»), скоба регулятора при этом должна находиться в положении выключенной подачи;

- е) установить на место соединительный патрубок впускных коллекторов.
- 6. Откачать рабоче-консервационное масло из картера двигателя и слить консервационную смесь из топливного фильтра тонкой очистки;

ВНУТРЕННЯЯ КОНСЕРВАЦИЯ КОРОБКИ ПЕРЕДАЧ

- 1. Отвернуть пробки сливных отверстий, слить масло из картера коробки передач, после чего пробки завернуть.
- 2. Отвернуть пробку заливного отверстия и залить 8 л рабочеконсервационного масла, имеющего температуру 70–80°С, после чего завернуть пробку.
- 3. Прокрутить первичный вал коробки передач не менее 6 оборотов, после чего слить масло и завернуть пробки сливных отверстий.

Срок действия внутренней консервации составляет 12 месяцев от даты ее проведения. Общее время хранения силового агрегата/ двигателя не должно превышать 24 месяца с даты изготовления двигателя. По истечении указанного срока силовой агрегат/двигатель должен быть введен в эксплуатацию, в противном случае он снимается с гарантийного сопровождения со стороны завода-изготовителя.

НАРУЖНАЯ КОНСЕРВАЦИЯ СИЛОВОГО АГРЕГАТА/ДВИГАТЕЛЯ

- 1. На двигателе, не проходящем внутреннюю консервацию, допускается смазать деревянные заглушки рабоче-консервационным маслом. Закрыть все отверстия полиэтиленовой пленкой.
- 2. Снять наружную крышку люка картера сцепления, установить заглушку и поставить крышку люка на место.
- 3. Протереть наружные поверхности двигателя, сцепления, коробки передач чистой ветошью, смоченной уайт-спиритом, до полного удаления грязи и масла, а затем вытереть насухо. Допускается мойка силового агрегата с последующей обдувкой сжатым воздухом.
- 4. Все резьбовые отверстия двигателя и коробки передач, резьбовые отверстия и клеммы стартера, генератора, датчика тахометра смазать рабоче-консервационным маслом или смазками ПВК или 3ЭС.
 - 5. При необходимости подкрасить силовой агрегат.
- 6. Смазать смесью рабоче-консервационного масла со смазкой ПВК или 3ЭС:
- фланец вторичного вала коробки передач, вал вилки выключения сцепления и ступицу привода агрегатов, после чего фланец, вал вилки и ступицу защитить водонепроницаемой бумагой;

- наружные поверхности маховика (для двигателей без сцепления и коробки передач), после чего закрыть упаковочной бумагой, оклеить или обвязать шпагатом;
- привалочные поверхности картера маховика (для двигателей без сцепления и коробки передач), после чего закрыть водонепроницаемой бумагой и обвязать шпагатом;
- привалочную поверхность картера маховика, посадочные шейки переднего носка коленчатого вала и привода вентилятора, закрыть (обернуть) водонепроницаемой бумагой и обвязать шпагатом у двигателей, неукомплектованных коробкой передач, шкивом коленчатого вала и вентилятором.
- 7. Генератор, передний носок коленчатого вала обернуть парафинированной бумагой и обвязать шпагатом.
- 8. Оклеить липкой полиэтиленовой лентой отверстия, закрытые пробками и транспортными крышками.
- 9. От консервации предохранить генератор, крыльчатку вентилятора, внутренние и наружные поверхности сцепления, а также резинотехнические детали. В случае попадания смазки на резинотехнические детали их тщательно протереть сухой ветошью.

Срок действия наружной консервации составляет 3 месяца от даты ее проведения. Наружная консервация проводиться через шесть месяцев с даты изготовления двигателя, далее через каждые три месяца.

Примечание: Через шесть месяцев с даты изготовления двигателя дополнительно провести консервацию топливной системы в объеме, указанном в разделе «Внутренняя консервация двигателя» настоящего руководства по эксплуатации.

Общее время хранения силового агрегата/двигателя не должно превышать 12 месяцев с даты изготовления двигателя. По истечении указанного срока силовой агрегат/двигатель должен быть введен в эксплуатацию или проведена внутренняя консервация, в противном случае двигатель снимается с гарантийного сопровождения со стороны завода-изготовителя.

По истечении срока действия внутренней консервации силовой агрегат/двигатель должен быть введен в эксплуатацию, в противном случае силовой агрегат/двигатель снимается с гарантийного сопровождения со стороны завода-изготовителя.

УПАКОВКА СИЛОВОГО АГРЕГАТА/ДВИГАТЕЛЯ

1. Законсервированный силовой агрегат установить на деревянную подставку и укрепить на ней.

- 2. Силовой агрегат, прошедший внутреннюю консервацию, упаковать вместе с подставкой полиэтиленовой пленкой и надежно укрепить.
- 3. На консервацию и упаковку каждого силового агрегата составить акт.

АКТ на консервацию и уп	аковку двигателя ЯМЗ
Двигатель №	Коробка передач №
Консервацию в соответствии с	с руководством на силовые агрегаты
ЯМЗ производил	
	дата и подпись
Проверил контролер ОТК	
	дата и штамп
Упаковку производил	·
	дата и подпись
Проверил контролер ОТК	
	дата и штамп
Срок переконсервации	

- 4. Транспортировку законсервированных силовых агрегатов производить в крытых грузовых автомобилях или вагонах, не использовавшихся ранее для перевозки кислот и других химикатов, способных вызвать коррозию.
- 5. Заполнить соответствующий раздел паспорта о проведенной консервации.

ВНУТРЕННЯЯ КОНСЕРВАЦИЯ СИЛОВОГО АГРЕГАТА/ДВИГАТЕЛЯ В СОСТАВЕ ИЗДЕЛИЯ

Хранение силового агрегата/двигателя в составе изделия может быть кратковременным и длительным.

При кратковременном хранении изделие находится или на предприятии-изготовителе, или отмечается перерыв в его эксплуатации от трех месяцев до одного года.

Длительное хранение – отмечается перерыв в эксплуатации изделия более одного года.

Подготовка к кратковременному хранению двигателей, введенных в эксплуатацию, применяется, если перерыв в эксплуатации двигателя планируется до шести месяцев, а при выполнении дополнительных работ до 12 месяцев.

Подготовка к кратковременному хранению двигателей, не введенных в эксплуатацию, применяется, если ввод в эксплуатацию двигателя планируется в течение 12 месяцев с даты изготовления двигателя.

Подготовка к длительному хранению двигателей, введенных в эксплуатацию, применяется, если перерыв в эксплуатации двигателя планируется до 12 месяцев.

Подготовка к длительному хранению двигателей, не введенных в эксплуатацию, применяется, если ввод в эксплуатацию двигателя планируется в течение 18 месяцев с даты изготовления двигателя.

Ниже приводится порядок проведения консервации силового агрегата/двигателя в составе изделия при кратковременном и длительном хранении.

КРАТКОВРЕМЕННОЕ ХРАНЕНИЕ

Проведение переконсервации при кратковременном хранении двигателя в составе изделия, введенного в эксплуатацию, производится через шесть месяцев от даты постановки изделия на хранение, далее через каждые три месяца. При этом общее время хранения должно быть не более 12 месяцев.

Проведение переконсервации при кратковременном хранении двигателя в составе изделия, не введенного в эксплуатацию, проводиться через шесть месяцев с даты изготовления двигателя, а далее через каждые три месяца. При этом общее время хранения должно быть не более 12 месяцев с даты изготовления двигателя.

Подготовка двигателя к кратковременному хранению осуществляется пуском двигателя.

При проведении каждого пуска двигателя во время хранения необходимо руководствоваться разделом руководства по эксплуатации «Пуск, работа и остановка силового агрегата».

После пуска двигателя дать возможность проработать ему 10-15 минут при средней частоте вращения на холостом ходу, после чего двигатель остановить. После работы масло, топливо и охлаждающую жидкость слить. Допускается масло, топливо и охлаждающую жидкость (если используется тосол) не сливать.

Провести наружную консервацию двигателя.

По окончании вышеуказанных работ вносится соответствующая запись в паспорт на двигатель (раздел «Консервация двигателя») с указанием марки масла, залитого в двигатель.

По истечении 12 месяцев изделие должно быть полностью введено в эксплуатацию или проведена внутренняя консервация, обеспечивающая длительное хранение на срок один год.

По истечении срока действия внутренней консервации, двигатель должен быть введен в эксплуатацию, в противном случае он снимается с гарантийного сопровождения со стороны завода-изготовителя.

ДЛИТЕЛЬНОЕ ХРАНЕНИЕ

Внутренняя консервация двигателя состоит из консервации систем питания, смазки внутренних поверхностей, в том числе коробки передач, и промывки системы охлаждения пассивирующим раствором. Если система охлаждения заполнена тосолом, то операция по промывке не проводится.

Такой способ консервации обеспечивает возможность хранения силовых агрегатов или двигателей в составе изделия без дополнительных воздействий сроком до 12 месяцев, т.е. на один год.

Консервацию системы питания производить смесью дизельного топлива с защитной присадкой-ингибитором.

Консервацию системы смазки внутренних поверхностей, цилиндров, воздухоочистителя и коробки передач проводить рабоче-консервационным маслом. Приготовление консервационных смесей приведено выше.

Консервацию силового агрегата производить в следующей последовательности:

- 1. Отвернуть пробку сливного отверстия и слить масло из картера двигателя. Пробку завернуть.
- 2. Отвернуть пробки сливных отверстий и слить масло из картера коробки передач. Пробки завернуть.
 - 3. Слить масло из топливного насоса высокого давления.

Примечание: Слив масла производить путем отсоса через отверстие для отвода масла, предварительно отсоединив трубку.

- 4. Слить охлаждающую жидкость из системы охлаждения двигателя при снятой пробке заливной горловины, закрыть краники и заправить систему охлаждения пассивирующим раствором в количестве, указанном в разделе «Техническая характеристика» настоящего руководства. Закрыть пробку заливной горловины.
- 5. Залить в отверстие для отвода масла из топливного насоса высокого давления рабоче-консервационное масло, имеющее температуру 70–80°С до уровня этого отверстия. Консервацию топливного насоса высокого давления производить из емкости, предназначенной для консервации цилиндров. Установить на место трубку отвода масла из топливного насоса.
- 6. Залить в картер двигателя, до верхней метки указателя уровня масла, рабоче-консервационное масло, имеющее температуру 70-80°C. Закрыть крышку маслоналивного патрубка.
- 7. Залить в картер коробки передач 8 л рабоче-консервационного масла при температуре 70-80°C. Завернуть пробку.

- 8. Запустить двигатель и проработать в течение 3-5 минут на режиме 1400-1600 мин $^{\text{-1}}$ с включенным сцеплением на нейтральной передаче.
- 9. Герметизировать впускную систему двигателя, исключив попадание в нее посторонних предметов, пыли и влажного воздуха:
- для двигателей, воздушный фильтр которых установлен непосредственно на впускном тракте (инерционно-масляный фильтр), закрыть его влагонепроницаемой пленкой;
- для двигателей, воздушный фильтр которых установлен вне двигателя, перекрыть трассу подвода воздуха к воздушному фильтру, установив заглушку и закрыв ее влагонепроницаемой пленкой.
 - 10. Слить топливо из фильтров грубой и тонкой очистки.

Примечание: Допускается топливо из фильтра грубой очистки не сливать.

- 11. Отсоединить сливную трубку от фильтра тонкой очистки топлива и подводящую трубку от фильтра грубой очистки топлива.
- 12. Подсоединить к фильтру грубой очистки топлива резиновый шланг и погрузить в емкость с чистым дизельным топливом.
- 13. Подсоединить к наконечнику фильтра тонкой очистки топлива резиновый шланг (исключить подсос воздуха), опустив другой конец в емкость для слива топлива.
- 14. Прокачать ручным топливопрокачивающим насосом систему питания до тех пор, пока из наконечника сливной трубки не пойдет чистое, без пузырьков воздуха, дизельное топливо (скоба останова регулятора должна находиться в положении включенной подачи. На двигателях с электронной системой управления топливоподачей демонтировать колпак рейки, выдвинуть рейку до упора и зафиксировать ее в этом положении). Для прокачки можно использовать специальный насос.
- 15. Отсоединить шланги от фильтров грубой и тонкой очистки топлива. Подсоединить сливную трубку к фильтру тонкой очистки топлива и подводящую к фильтру грубой очистки топлива, предварительно законсервировав внутренние полости указанных трубок. Слить консервационную смесь из фильтров грубой и тонкой очистки топлива.
- 16. Консервацию цилиндров производить в следующей последовательности:
 - а) снять соединительный патрубок впускных коллекторов;
- б) повернуть коленчатый вал так, чтобы впускные клапаны консервируемого цилиндра были открыты;

в) залить в цилиндры через отверстия во впускных коллекторах с помощью гибкого шланга 60-70 мл рабоче-консервационного масла, имеющего температуру 70-80°С;

Примечание: Консервацию цилиндров производить рабочее-консервационным маслом из емкости, предназначенной только для консервации цилиндров;

- г) повторить операции «б» и «в» для всех цилиндров;
- д) прокрутить коленчатый вал по часовой стрелке (если смотреть с переднего торца двигателя) не менее 6 оборотов (в случае консервации силового агрегата выполнить операции п.3 раздела «Внутренняя консервация коробки передач») при выключенном «выключателе массы» изделия, скоба останова регулятора при этом должна находиться в положении выключенной подачи.

Примечание: Для двигателей, оборудованных топливным насосом высокого давления с механическим регулятором, допускается прокрутка коленчатого вала стартером в течение 20-30 секунд. При этом скоба останова регулятора должна находиться в положении выключенной подачи.

Примечание: В случае появления вспышки в цилиндрах повторно произвести консервацию согласно требованиям.

- е) установить на место соединительный патрубок впускных коллекторов.
- 17. Слить рабочее-консервационное масло из топливного насоса (см. пункт 3), поставить на место трубку отвода масла.
- 18. Слить рабоче-консервационное масло из картера двигателя, картера КП. Завернуть пробки.
- 19. Слить из системы охлаждения двигателя пассивирующий раствор при снятой крышке заливной горловины. После этого закрыть крышку заливной горловины и сливные краники.

Примечание: Разрешается слив пассивирующего раствора производить после выхода автомобиля из помещения.

20. В картер двигателя и картер коробки передач залить рабочую смазку в соответствии с руководством по эксплуатации.

ВНИМАНИЕ! ПРОКРУТКА СИЛОВОГО АГРЕГАТА ПОСЛЕ КОНСЕРВАЦИИ НЕ РАЗРЕШАЕТСЯ.

- 21. Провести наружную консервацию силового агрегата/ двигателя.
- 22. Проведение работ по консервации зафиксировать в паспорте на двигатель.

Срок действия внутренней консервации составляет 12 месяцев от даты ее проведения.

Общее время хранения силового агрегата/двигателя не должно превышать 24 месяца с даты изготовления двигателя. По истечении указанного срока силовой агрегат/двигатель должен быть введен в эксплуатацию, в противном случае двигатель снимается с гарантийного сопровождения со стороны завода-изготовителя.

РАСКОНСЕРВАЦИЯ СИЛОВОГО АГРЕГАТА/ДВИГАТЕЛЯ

- 1. Снять упаковочную бумагу, полиэтиленовую пленку и полиэтиленовую ленту с липким слоем с деталей, узлов и агрегатов.
- 2. Протереть чистой ветошью, смоченной бензином растворителем, поверхность маховика (на двигателях, неукомплектованных коробкой передач и сцеплением), поверхность ручьев шкивов коленчатого вала и генератора до полного удаления защитной смазки, а затем протереть насухо.
 - 3. Снять транспортные заглушки и пробки.
 - 4. Установить на место снятые при консервации детали.
- 5. Установить двигатель/силовой агрегат на шасси изделия или стенд.
- 6. При вводе в эксплуатацию специальной расконсервации внутренних поверхностей двигателя не производить.

Двигатель подготовить к пуску в соответствии с требованиями руководства по эксплуатации.

ТЕХНИКА БЕЗОПАСНОСТИ И ПРОТИВОПОЖАРНЫЕ МЕРОПРИЯТИЯ ПРИ КОНСЕРВАЦИИ И РАСКОНСЕРВАЦИИ

- 1. Консервация производится специальными работниками, получившими соответствующий инструктаж, под руководством лица, ответственного за консервацию, с соблюдением требований охраны труда и противопожарной безопасности.
- 2. Рабочие, обслуживающие ванны консервации, должны быть обеспечены клеенчатыми или брезентовыми фартуками, резиновыми перчатками или рукавицами и приспособлениями, предотвращающими соприкосновение рук с консервирующими материалами. Возле ванны на участке консервации установить деревянные трапы.
- 3. Химикаты хранить на складе химических реактивов в специальной закрытой таре с этикетками и выдавать только лицам, ответственным за приготовление растворов и смесей.
- 4. Запрещается хранение и принятие пищи на участке консервации. Перед принятием пищи тщательно вымыть руки во избежание попадания реактивов в пищу. Запрещается мыть руки в моющих растворах.
- 5. Курение, зажигание спичек и пользование открытым огнем на участке, предназначенном для консервации, категорически запрещается.
- 6. В целях противопожарной безопасности категорически запрещается производить мойку деталей уайт-спиритом или бензином, если предусмотрена только протирка ветошью, смоченной в уайт-спирите или бензине.
- 7. Количество уайт-спирита или бензина на участке консервации не должно превышать сменной потребности. Участки обеспечить необходимыми противопожарными средствами (огнетушителями, ящиком с песком, асбестовыми одеялами и др.).
- 8. Ветошь, смоченную бензином или уайт-спиритом, бывшую в употреблении при протирке деталей, узлов и агрегатов, складывать в металлические ящики с плотно закрывающейся крышкой и надписью «Огнеопасно».

приложение в

МОМЕНТЫ ЗАТЯЖКИ ОСНОВНЫХ РЕЗЬБОВЫХ СОЕДИНЕНИЙ

тезинових соединении				
Резьбовое соединение	Момент затяжки Н·м (кгс·м)			
Болты крепления крышек коренных подшипников:				
- вертикальные	430-470 (43-47)			
- горизонтальные	100-120 (10-12)			
Болты крепления крышек шатунов	200-220 (20-22)			
Болты крепления картера маховика	100-125 (10-12,5)			
Болты крепления маховика:				
- с пластинами стоп. под два болта	200-220 (20-22)			
- с пластиной под все болты	235-255 (24-26)			
Болты крепления кронштейна передней опоры				
двигателя	90–110 (9–11)			
Боты крепления верхней крышки блока				
цилиндров	25–32 (2,5–3,2)			
Гайки шпилек крепления головки цилиндров	240–260 (24–26)			
Гайки крепления осей коромысел	120-150 (12-15)			
Болт скобы крепления стартера	70-90 (7-9)			
Болты крепления кронштейнов стартера	45-62 (4,5-6,2)			
Болты стартера с фланцевым креплением М12	98,1-122,6 (10-12,5)			
Гайки скоб крепления форсунок	50-62 (5-6,2)			
Гайка крепления муфты опережения впрыска	130–150 (13–15)			
Штуцеры топливного насоса высокого давления	100–120 (10–12)			
Гайки распылителей форсунок	60-80 (6-8)			
Штуцер форсунки	8–10 (8–10)			
Гайка крепления шестерни распределительного	0 10 (0 10)			
вала	270-300 (27-30)			
Гайка крепления ведомой шестерни привода	() ()			
топливною насоса	140-180 (14-18)			
Резьбовые соединения муфты привода	, ,			
топливного насоса высокого давления				
- болты крепления пластин к ведомой				
полумуфте	32-40 (3,2-4)			
- остальныс	44-60 (4,4-6,0)			
Гайка оси шкива натяжного устройства привода				
пневмокомпрессора	120-150 (12-15)			
204				

	Marram
Резьбовое соединение	Момент затяжки Н·м (кгс·м)
	птм (кгстм)
Гайка болта-натяжителя натяжного устройства привода компрессора	10-20 (1-2)
Гайки регулировочных винтов коромысел	44–56 (4,4–5,6)
Болты крепления масляного насоса	90–100 (9–10)
Пробка сливная масляного картера	140–160 (14–16)
Болты крепления топливного насоса высокого	140-100 (14-10)
давления	28-36 (2,8-3,6)
Болты крепления топливного насоса высокого	
давления V-образного исполнения	14–22 (1,4–2,2)
Гайки топливопроводов высокого давления	18–25 (1,8–2,5)
Болты крепления турбокомпрессора	36–44 (3,6–4,4)
Болты крепления выпускных коллекторов	36–44 (3,6–4,4)
Болты крепления топливопроводов низкого давления	
- M10	20-25 (2-2,5)
- M14	40–50 (4–5)
- M16	48–50 (4,8–6)
Болты крепления полиамидных топливопроводов	* * * *
низкого давления:	
- M10	8-11 (0,8-1,1)
- M14	18–23 (1,8–2,3)
Болты крепления картера сцепления к картеру коробки передач	137–157 (14–16)
Болты крепления картера сцепления к картеру маховика M12	98–108 (10–11)
Болты крепления проставки к картеру основной коробки	123–157 (12,5–16)
Болты крепления картера демультипликатора к проставке	
- предварительная затяжка	20-30 (2-3)
- окончательная затяжка	79–98 (8–10)
Болты крепления верхней крышки картера	, ,
основной коробки	35–49 (3,6–5)
Оси вилки переключения демультипликатора	118–128 (12–13)
Болты крепления крышки первичного вала	23,5–35 (2,4–3,6)
Болты крепления муфты зубчатой низшего	
диапазона к проставке	49–55 (5–5,6)
Болт крепления фланца выходного вала	431–490 (44–50)

приложение г

Сведения о содержании драгоценных материалов

Обозначение	Виды драгоценных материалов	Масса в изделии, г
F	серебро	0,2894
Генератор	палладий	0,0035

Сведения о содержании цветных металлов и сплавов:

1. Алюминий и сплавы на алюминиевой основе

Обозначение		Mad	са, кг
		1 шт.	на дви- гатель
Крышка блока верхняя 236-1002256-В4	1	2,1	2,1
Крышка шестерен 238Б-1002264-Б	1	8,4	8,4
Труба водяная правая 236-1003290-В	1	0,94	0,94
Труба водяная левая 236-1003291-В	1	0,93	0,93
Поршень 238НБ-1004015-Б4	6	2,85	17,10
Корпус маслоочистителя 236-1028020-Б	1	1,50	1,50
Корпус ротора 236-1028185	1	0,46	0,46
Колпак ротора 236-1028242	1	0,68	0,68
Колпак маслоочистителя 236-1028250	1	0,88	0,88
Корпус ТНВД 60.1111022-30		5,7	5,7
Корпус ТНВД 136.1111025-01		6,01	6,01
Корпус ТНВД 323.1111025		4,55	4,55
Корпус регулятора 807.1110022-10		1,08	1,08
Корпус регулятора 84.1110022	1	1,03	1,03
Крышка регулятора 60.1110129	1	0,96	0,96
Крышка регулятора верхняя 33.1110025	1	0,358	0,358
Крышка регулятора задняя 333.1110129-31	1	0,358	0,358
Крышка смотрового люка 805.1110498-10	1	0,26	0,26
Корпус мембраны 423.1110880-10	1	0,16	0,16
Корпус мембраны 333.1110732-31	1	0,35	0,35
Проставка корректора 423.1110923		0,21	0,21

Обозначение		Mad	са, кг
		1 шт.	на дви- гатель
Крышка подшипника 60.1111182-11		0,11	0,11
Цилиндр ТПН 236-1106292-E	1	0,025	0,025
Цилиндр TПН 33.1106356	1	0,035	0,03 5
Коллектор впускной правый 236НЕ-1115021	1	2,48	2,48
Коллектор впускной левый 236-1115024	1	2,08	2,08
Патрубок 236-1115032-Г	1	2,20	2,20
Колесо компрессора 1000.1118.110	1	0,25	0,25
Корпус компрессора 1000.1118.130	1	1,8	1,8
Подшипник упорный 12.1118272	1	0,03	0,03
Крышка корпуса подшипников 12.1118280	1	0,95	0,95
Коробка термостата 7511.1306052	2	0,45	0,90
Патрубок 236-1306053	1	0,12	0,12
Крышка люка 236-1701020	2	0,30	0,61
Крышка подшипника 236-1701074-A2		0,44	0,44
Крышка заднего подшипника 236-1701205-Б4		1,25	1,25
Корпус манжеты 236-1701478-Б		0,14	0,14
Крышка заборника 236-1704054-Б		0,24	0,24
Кронштейн натяжного устройства 236-3509306-A		0,52	0,52
Итого:			68,161
2. Медь и сплавы на медной основе			
Стакан форсунки 236-1003112-В		0,14	0,81
Вкладыш шатуна 236-1004058-В	12	0,01	0,18
Вкладыш подшипника 236-1005170-В	4	0,02	0,08
Вкладыш подшипника 236-1005171-В	4	0,02	0,08
Полукольцо упорного подшипника 236-1005183-Д		0,16	0,64
Втулка распределительного вала передняя 236-1006026-A		0,44	0,44
Втулка распределительного вала 840.1006026-10	6	0,02	0,12

		Кол-	Масса, кг		
06	Обозначение		во на двига тель	1 шт.	на дви- гатель
Втулка распред 236-1006037-A	елительного вала		3	0,33	0,98
Втулка коромыс	ла 236-1007118-В		12	0,03	0,32
Втулка толкател	ля 236-1007186		24	0,01	0,24
Втулка 236-101	1206		1	0,02	0,02
Лист секции мас 201-1013350	Лист секции масляного радиатора		1	0,05	0,05
Подшипник 1000.1118.030		1	0,33	0,33	
Подшипник упорный 1000.1118.036		1	0,1	0,1	
Кольцо конусное синхронизатора 200-1701164-A		2	0,38	0,76	
Кольцо конусное синхронизатора 200-1701165-A		2	0,33	0,66	
Кожух магнита 236-17040128		1	0,02	0,02	
Заглушка 313934-П		10	0,02	0,22	
Заглушка 313992		6	0,02	0,16	
	Итого:				6,21
Примечание.	Изменение массы	ЦВ	етных	металл	10B B

Примечание. Изменение массы цветных металлов в процессе эксплуатации силового агрегата не учитывается

приложение д

ПРЕДПРОДАЖНАЯ ПОДГОТОВКА

При покупке на ОАО "Автодизель" в запасные части номерных агрегатов (двигатель в сборе, блок цилиндров, коробка передач) требуйте заполнения сервисного талона по предпродажной подготовке.

ПЕРЕЧЕНЬ РАБОТ ПО ПРЕДПРОДАЖНОЙ ПОДГОТОВКЕ НОМЕРНЫХ АГРЕГАТОВ НА ОАО "АВТОДИЗЕЛЬ"

1 ДВИГАТЕЛЬ

Проверить:

комплектность:

- двигатель,
- паспорт,
- руководство по эксплуатации;
 угол опережения впрыскивания топлива;

затяжку всех наружных соединений;

наличие пломб:

 на топливном насосе высокого давления; состояние наружных поверхностей на отсутствие коррозии, механических повреждений;

отсутствие неокрашенных поверхностей;

соответствие маркировки с паспортными данными (дата изготовления, номер, модель, соответствие заводской табличке);

наружную консервацию:

- наличие транспортных заглушек и пробок во всех отверстиях;
- смазку всех резьбовых отверстий;
- картер маховика должен быть закрыт парафинированной бумагой и обвязан шпагатом;
- наружная поверхность кожуха сцепления, посадочная поверхность переднего конца коленчатого вала (при отсутствии шкива в соответствии с комплектацией), а также генератор должны быть обернуты парафинированной бумагой и обвязаны шпагатом;

целостность транспортной подставы; правильность крепления на подставе.

2 КОРОБКА ПЕРЕДАЧ

Проверить:

комплектность:

- коробка передач,
- акт консервации в пакете;

маркировку:

- модель.
- порядковый номер,
- дата изготовления;

затяжку всех наружных соединений;

состояние наружных поверхностей на отсутствие коррозии, механических повреждений;

отсутствие неокрашенных, незаконсервированных поверхностей; наружную консервацию:

- наличие транспортных заглушек и пробок во всех сквозных отверстиях:
- защиту от окраски и коррозии всех несквозных отверстий, выступающей части валика механизма переключения передач или конуса и резьбовой части рычага переключения передач;
- первичный вал, горловина крышки первичного вала, муфта выключения сцепления (при наличии) должны быть закрыты парафинированной бумагой и обвязаны шпагатом;
- консервационную смазку фланца вторичного вала и наличие на нем защитного кожуха.

целостность транспортной подставы; правильность крепления на подставе.

3 БЛОК ЦИЛИНДРОВ

Проверить:

комплектность:

- блок цилиндров,
- шпильки,
- пробки масляных каналов,
- водяные заглушки,
- штифты;

маркировку:

- год изготовления,
- номер;

отсутствие коррозии привалочных поверхностей, механических повреждений;

наружную консервацию;

целостность транспортной подставы;

надежность крепления блока на подставе.

Образец сервисного талона (двигатель):

соответствии с комплектацией), а также генератор должны быть обернуты парафинированной бумагой и обвязаны шпагатом; целостность транспортной подставы; правильность креплеми на подставе.

Предпродажная подготовка

Отметка о предпродажной подготовке $\partial в$ игателя
(обозначение двигателя)
подготовлен в соответствии с перечнем работ по предпродажной подготовке
Место штампа
(фамилия и должность ответственного за проведение предпродажной подготовки)

Подпись

Перечень работ по предпродажной подготовке двигателя

Проверить:

- комплектность:
- двигатель, – паспорт
- руководство по эксплуатации;

угол опережения впрыска топлива;

затяжку всех наружных соединений;

наличие пломб:
- на топливном насосе высокого давления;

состояние наружных поверхностей на отсутствие коррозии, механических повреждений;

отсутствие неокрашенных поверхностей;

соответствие маркировки с паспортными данными (дата изготовления, номер, модель, соответствие заводской табличке);

наружную консервацию:

- наличие транспортных заглушек и пробок во всех отверстиях;
- смазку всех резьбовых отверстий;
- картер маховика должен быть закрыт парафинированной бумагой и обвязан шпагатом;
- наружная поверхность кожуха сцепления, посадочная поверхность переднего конца коленчатого вала (при отсутствии шкива в соответствии с комплектацией), а также генератор

ПРИВОД ВЕНТИЛЯТОРА С ЭЛЕКТРО-МАГНИТНЫМ КЛАПАНОМ КЭМ 32-23М2

С сентября 2004 года ОАО «Автодизель» перешел на комплектование двигателей ЯМЗ, соответствующих требованиям Евро-1 и Евро-2 приводами вентилятора, оборудованными электромагнитным включателем.

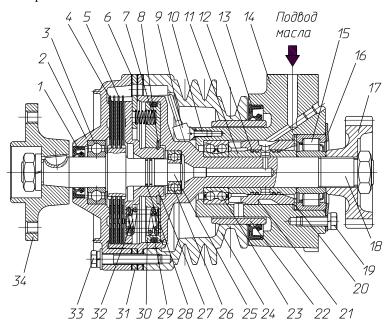


Рис. 123. Привод вентилятора

1 — манжета; 2 — крышка; 3 — подшипник; 4 — диск ведомый; 5 — диск ведущий; 6 — прокладка; 7 — пружина отжимная; 8 — кольцо упорное; 9 — трубка черпательная; 10 — винт; 11 — втулка распорная; 12 — кольцо уплотнительное; 13 — манжета; 14 — корпус; 15 — подшипник; 16 — фланец упорный; 17 — шестерня; 18 — вал ведущий; 19 — болт; 20 — шайба; 21 — втулка; 22 — втулка распорная; 23 — подшипник; 24 — шкив; 25 — вал ведомый; 26 — подшипник; 27 — обойма нажимная; 28 — кольцо уплотнительное; 30 — поршень; 31 — упор поршня; 32 — пружина нажимная, 33 — болт; 34 — ступица вентилятора.

ВКЛЮЧАТЕЛЬ ЭЛЕКТРОМАГНИТНЫЙ

Особенности работы электромагнитного включателя (рис. 124 - 127) заключаются в том, что от термореле, расположенного на правом водяном коллекторе, поступает электрический сигнал к электромагнитному клапану, который устанавливается непосредственно на корпусе привода вентилятора и управляет поступлением масла в муфту привода. Соединение клапана с корпусом уплотняется паронитовой прокладкой.

С августа 2007 года подача масла к электромагнитному клапану осуществляется от корпуса масляного фильтра через трубку подвода масла 5 (рис. 124).

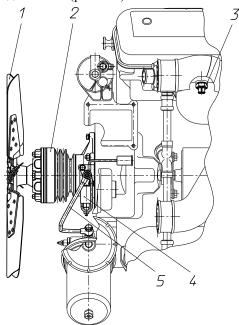


Рис. 124. Расположение деталей привода вентилятора с электромагнитным клапаном на двигателе:

1 – вентилятор; 2 – муфта привода; 3 – термореле; 4 – электромагнитный клапан; 5 – трубка подвода масла.

Конструкция электромагнитного клапана (рис. 125) обеспечивает необходимое давление масла при включении вентилятора, а также предусматривает регламентируемую подачу масла в

выключенном состоянии через специальный самоочищающийся жиклер для обеспечения смазки подшипников привода. При отсутствии напряжения на контактах штекерной колодки электромагнитный клапан находится в закрытом положении. При подаче напряжения 24 В клапан открывается.

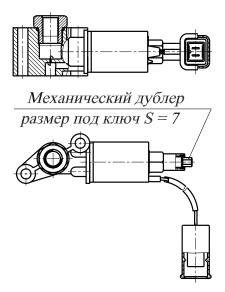


Рис. 125. Клапан электромагнитный КЭМ 32-23М2

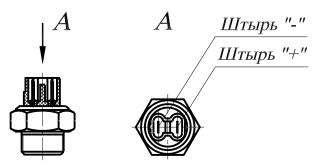


Рис. 126. Термореле

С целью повышения эффективности работы по исключению засорения в корпусе клапана размещен постоянный магнит для улавливания металлических частиц.

В процессе эксплуатации техническое обслуживание электромагнитного клапана не требуется, при необходимости допускается очистка магнита от металлических частиц.

Управление работой электромагнитного клапана осуществляется трехпозиционным переключателем, расположенным в кабине водителя.

При включении вентилятора на пульте водителя загорается контрольная лампа (см. схему рис. 127).

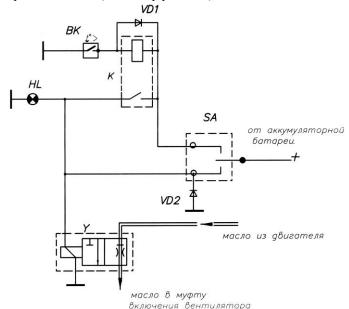


Рис. 127. Схема включения муфты вентилятора электрическая, принципиальная

Схема включения муфты вентилятора электрическая, принципиальная включает следующие элементы:

Обозначение элемента	Наименование	Кол-во
ВК	Термореле 661.3710-01	1
Y	Электромагнитный клапан КЭМ 32-23М2*	1
HL	Контрольная лампа	1
SA	Переключатель 51.3709**	1
VD1, VD2	Диод Д247А**	2
K	Реле 11.3747**	1

- * Привод вентилятора комплектуется электромагнитным клапаном КЭМ 32-23М2 при напряжении бортовой сети 24 В.
- ** Схема электрическая принципиальная, поэтому она может видоизменяться, в том числе могут быть применены другие комплектующие, которые выбираются предприятиями потребителями силовых агрегатов.

Функции элементов схемы электрической принципиальной:

- 1. Переключатель SA находится в кабине.
- 2. Переключатель SA имеет три положения:
 - «Выключено» вентилятор выключен независимо от температуры двигателя.
 - «Включено» вентилятор включен независимо от температуры двигателя.
 - «Автомат» вентилятор включается от термореле в зависимости от температуры двигателя.
- 3. HL лампа контрольная, включается при работе вентилятора.

При выходе из строя электрической части системы управления вентилятором (обрывы обмотки электромагнита, проводов и т.п.) конструкцией электромагнитного клапана КЭМ 32-23М2 предусмотрено принудительное включение вентилятора с помощью механического дублера. Открытие клапана производится закручиванием винта дублера до упора.

При изменении режимов работы вентилятора трехпозиционным переключателем, расположенным в кабине водителя, винт механического дублера должен быть вывернут до упора.

ВНИМАНИЕ! ПРИ РАБОТЕ ВЕНТИЛЯТОРА В АВТОМАТИЧЕСКОМ РЕЖИМЕ (ВЕНТИЛЯТОР ВКЛЮЧАЕТСЯ ОТ ЭЛЕКТРИЧЕСКОГО СИГНАЛА ТЕРМОРЕЛЕ В ЗАВИСИМОСТИ ОТ ТЕМПЕРАТУРНОГО РЕЖИМА) ВИНТ РУЧНОГО ДУБЛЕРА ДОЛЖЕН БЫТЬ ВЫВЕРНУТ ДО УПОРА.

РАЗБОРКА И СБОРКА ПРИВОДА ВЕНТИЛЯТОРА

ПОРЯДОК СНЯТИЯ И РАЗБОРКИ ПРИВОДА ВЕНТИЛЯТОРА

- 1. Отвернуть болты крепления и снять крыльчатку вентилятора.
- 2. Ослабить крепление натяжных устройств ремня пневмокомпрессора и ремня генератора, снять ремни со шкива привода вентилятора.
- 3. Отсоединить провода подачи напряжения к электромагнитному клапану, демонтировать трубку подвода масла, вывернув болт ее крепления из штуцера клапана, и, отвернув болты крепления, снять клапан вместе с прокладкой с привода вентилятора.
- 4. Отвернуть болты и гайки крепления, аккуратно, не повредив прокладку, снять с двигателя привод вентилятора.
- 5. Отвернуть болты крепления и снять с привода крышку 2 (см. рис. 123) в сборе со ступицей и ведомым валом 25, извлечь из ведущего вала 18 пакет ведущих и ведомых дисков 4 и 5, а также поршень 30 в сборе с упором 31 и нажимной обоймой 27.
- 6. Зафиксировать шестерню привода 17 от проворота, отвернуть гайку ее крепления. Используя любой подходящий съемник, спрессовать шестерню с ведущего вала.
- 7. Выпрессовать ведущий вал. При этом шкив 24 должен быть зафиксирован в осевом направлении во избежании поломки черпательной трубки 9. После этого извлечь из корпуса привода 14 внутреннюю обойму заднего подшипника 15 и внутреннюю распорную втулку 11 вместе с уплотнительными кольцами 12.
- 8. Вывернуть винты крепления 10, снять черпательную трубку и шкив привода компрессора и генератора.
- 9. Отвернуть болты 19 крепления упорного фланца 16, выпрессовать наружную распорную втулку 21 и наружную обойму заднего подшипника. Во избежании передачи осевого усилия через сепаратор переднего подшипника, выпрессовку необходимо проводить с помощью специального приспособления, как показано на рис. 128 и 129. После этого извлечь из корпуса передний подшипник.

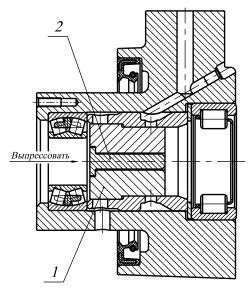


Рис. 128. Выпрессовка распорной втулки 1-сухарь~(2~шт.);~2-вставка

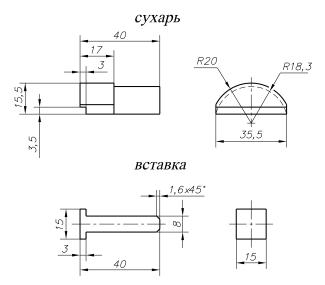


Рис. 129. Приспособление (материал – сталь)

ПОРЯДОК СБОРКИ ПРИВОДА ВЕНТИЛЯТОРА

Сборку привода вентилятора необходимо осуществлять в обратной последовательности. При этом должны соблюдаться следующие требования:

- 1. Перед сборкой все манжеты, резиновые и металлические уплотнительные кольца, а также подшипники должны быть смазаны дизельным маслом.
- 2. Запрессовку переднего сферического подшипника в корпус необходимо производить с помощью оправки, недопускающей перекоса внутренней обоймы относительно наружной, а также передачи осевого усилия через сепаратор.
- 3. Установку распорных втулок в корпус привода необходимо проводить, как показано на рис. 130, чтобы обеспечить совпадение маслоподводящих отверстий.

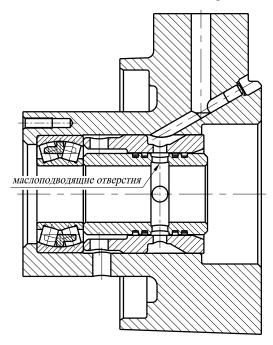


Рис. 130. Установка распорных втулок в корпус привода вентилятора

- 4. При сборке пакета фрикционных дисков чередование ведущих и ведомых дисков должно быть таким, как изображено на рис. 123. При этом ведущие диски необходимо устанавливать так, чтобы направление отжимных усов было против часовой стрелки, если смотреть на привод со стороны ступицы вентилятора.
- 5. При сборке привода вентилятора необходимо обеспечить затяжку контролируемым моментом следующих резьбовых соединений:
 - болтов упорного фланца 1,8...2,0 Н⋅м (18...20 кгс⋅м);
 - винтов черпательной трубки 0,5...0,8 Н⋅м (4,9...7,8 кгс⋅м);
 - болтов крышки привода 2,0...2,5 Н⋅м (19,61...24,51кгс⋅м);
 - гаек шестерни и ступицы 16...20 H·м (156,9...196,1кгс·м).

При этом во время сборки на заходную часть резьбы гайки шестерни необходимо нанести герметик УГ-9 ТУ 2257-407-00208947-2004 или УГ-10 ТУ 2257-408-00208947-2004. Ржавчина, масляные и другие загрязнения в резьбовом соединении не допускаются.

У собранного привода вентилятора вращение шкива относительно корпуса должно быть свободным, без заеданий. Вращение ступицы вентилятора относительно неподвижных корпуса и шкива также должно быть свободным, без заеданий.

приложение ж

ОСОБЕННОСТИ ДВИГАТЕЛЕЙ С ТОПЛИВНЫМ НАСОСОМ V-ОБРАЗНОГО ИСПОЛНЕНИЯ

На ряде комплектаций двигателей (см. таблицу ниже) устанавливается топливный насос высокого давления V-образного исполнения производства ОАО "ЯЗДА" г. Ярославль.

Модель двигателя	Модель ТНВД	Применяемость двигателя
ЯМЗ-236НЕ-18	222 5 11	ООО «Ликинский автобус» (ЛиАЗ)
ЯМЗ-236НЕ-28	323.5–11	Автобус ЛиАЗ-5256 (в запчасти)
ЯМЗ-236НЕ-33	323.5–11	ОАО «ЛАЗ» (Львов) Автобусы ЛАЗ-52528 (в запчасти)
ЯМЗ-236НЕ2-3	324.5–10.01	ОАО «АЗ «Урал» (Миасс) Автомобили Урал (в запчасти)
ЯМЗ-236НЕ2-15	324.5–10	ООО «Ликинский автобус» (ЛиАЗ) Автобус ЛиАЗ-5256 (в запчасти)
ЯМЗ-236НЕ2-20	324.5–20	ОАО «АЗ «Урал» (Миасс) Автомобиль Урал-43206-41
ЯМЗ-236НЕ2-24	324.5–10.01	ОАО «АЗ «Урал» (Миасс) Автомобили Урал-43206
ЯМЗ-236НЕ2-28	324.5-10	ООО «Ликинский автобус» (ЛиАЗ) Автобус ЛиАЗ-5256 (в запчасти)
ЯМЗ-236НЕ2-37	324.5-10	РУП «ОЗ «Неман» (Лида) Автобусы Неман 5201
ЯМЗ-236БЕ2-14	324.5–10.01	ОАО «АЗ «Урал» (Миасс) Автомобиль Урал-4320-43

Эксплуатацию и техническое обслуживание перечисленных двигателей производить в соответствии с указаниями настоящего руководства по эксплуатации с изменениями, относящимися к особенностям топливного насоса высокого давления, и описанными ниже.

ТОПЛИВНЫЙ НАСОС ВЫСОКОГО ДАВЛЕНИЯ МОДЕЛЕЙ 323.5, 323.5-11, 324.5, 324.5-10, 324.5-10.01

Топливный насос высокого давления (ТНВД) предназначен для подачи в цилиндры двигателя в определенные моменты времени строго дозированных порций топлива под высоким давлением.

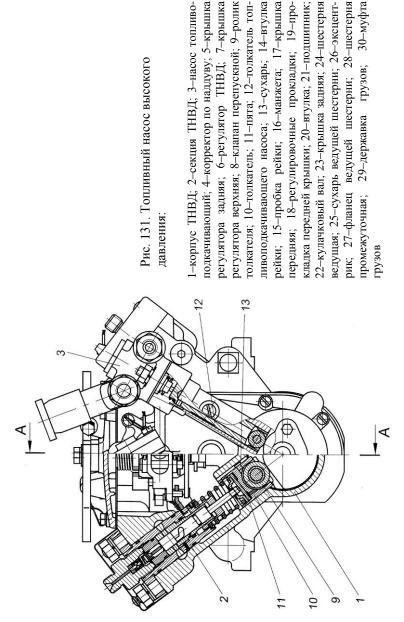
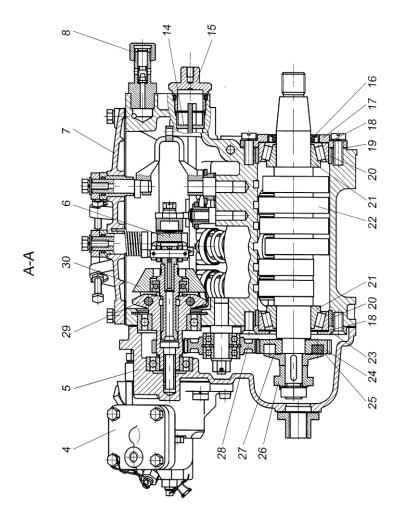



Рис. 131. Топливный насос высокого давления: 29-державка грузов; 30-муфта

ТНВД расположен в развале блока цилиндров двигателя. Привод его осуществляется от распределительного вала двигателя через гитару зубчатых колес при помощи ведущей и ведомой полумуфт с упругими пластинами. Общий вид ТНВД представлен на (рис. 131).

С топливным насосом высокого давления в одном агрегате объединены топливоподкачивающий насос 3, регулятор частоты вращения 6 с корректором по наддуву 4 и гаситель крутильных колебаний (рис. 1326), который устанавливается на ТНВД моделей 324.5, 324.5-10, 324.5-10.01, на ТНВД моделей 323.5 и 323.5-11 устанавливается полумуфта привода (рис. 132а).

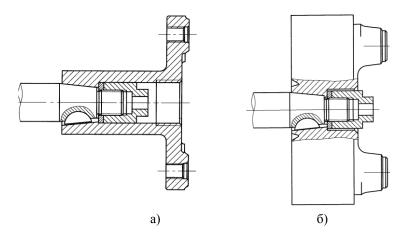


Рис. 132. Привод топливного насоса высокого давления:

- а) модели 323.5, 323.5-11;
- б) модели 324.5, 324.5-10, 324.5-10.01

УСТРОЙСТВО И РАБОТА ТНВД

Корпус топливного насоса 1 (рис. 131) выполнен в виде V-образной конструкции. Угол развала блока составляет 75°.

В нижней части корпуса насоса в расточке расположен кулачковый вал 22 с напрессованными на него роликовыми коническими подшипниками 21. От осевого перемещения кулачковый вал зафиксирован двумя крышками 17 и 23. Для

уплотнения относительно корпуса передняя крышка 17 устанавливается через паронитовую прокладку 19, а относительно кулачкового вала – с помощью манжеты 16. Под крышки устанавливаются регулировочные прокладки 18, которыми регулируется натяг в подшипниках (требуемый расчетный натяг 0,05...0,1мм).

В расточки корпуса насоса установлены толкатели 10, состоящие из корпуса толкателя, ролика, втулки и оси, которая фиксируется относительно корпуса толкателя штифтом. Толкатель в сборе фиксируется от проворота в корпусе ТНВД с помощью специального сухаря 13. В толкатели установлены пяты 11, имеющие разную толщину, которая определяется в процессе регулировки ТНВД.

В корпус насоса установлены шесть съемных секций в сборе 2. Каждая секция (рис. 133) состоит из корпуса секции 8, поворотной втулки 16, втулки 5 с плунжером 14, нагнетательного клапана 12 с седлом 4, которое прижимается штуцером 1 к втулке плунжера. Нагнетательный клапан прижат к седлу пружиной 2 с упором 11.

Правильное положение втулки плунжера относительно корпуса секции обеспечивается штифтом 6, а ее герметичность – резиновым кольцом 7.

В нижнее положение плунжер возвращается пружиной 17, упирающейся в верхнюю тарелку 9 и нижнюю тарелку 10, связанную с хвостовиком плунжера. Тарелка 10 упирается в пяту, установленную в корпусе толкателя. Между хвостовиком плунжера и пятой должен быть зазор до 0,1мм.

Герметичность корпуса секции относительно корпуса ТНВД обеспечивается с помощью двух резиновых колец 3. (При сборке в верхнюю и нижнюю канавку устанавливаются одинаковые резиновые кольца!)

Секции в сборе крепятся к корпусу ТНВД с помощью шпилек и гаек.

ВНИМАНИЕ! НАГНЕТАТЕЛЬНЫЙ КЛАПАН И СЕДЛО КЛАПАНА, ВТУЛКА ПЛУНЖЕРА И ПЛУНЖЕР – ПРЕЦИЗИОННЫЕ ПАРЫ, КОТОРЫЕ МОГУТ ЗАМЕНЯТЬСЯ ТОЛЬКО КОМПЛЕКТНО

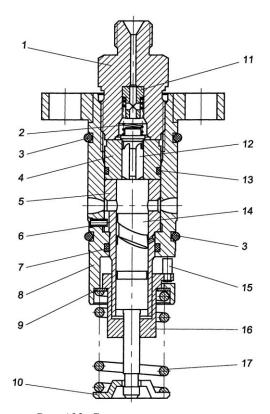


Рис. 133. Секция топливного насоса

1-штуцер; 2-пружина нагнетательного клапана; 3, 7, 13-кольцо уплотнительное; 4-седло нагнетательного клапана; 5-втулка плунжера; 6-штифт; 8-корпус секции; 9-тарелка пружины верхняя; 11-упор; 12-нагнетательный клапан; 14-плунжер; 15-поводок; 16-поворотная втулка; 17-пружина толкателя

РАБОТА НАСОСНОЙ СЕКЦИИ

Плунжер 14 приводится в движение от кулачкового вала посредством толкателя. Пружина 17 через тарелку 10 постоянно прижимает ролик толкателя к кулачку, что обеспечивает возвратно – поступательное движение плунжера.

На ТНВД моделей 323.5, 323.5-11 установлены плунжерные пары с диаметром плунжера 11 мм (рис. 134a).

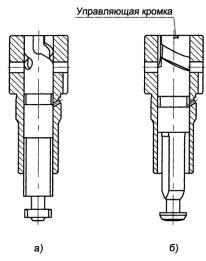


Рис. 134. Плунжерная пара

- а) модификации 323.5, 323.5–11;
- б) модификации 324.5, 324.5-10, 324.5-10.01

Плунжерная пара служит для создания высокого давления топлива у форсунки и изменения количества топлива, подаваемого в камеру сгорания двигателя за цикл. Дозирование топлива осуществляется изменением конца подачи топлива при постоянном начале нагнетания. Втулка плунжера имеет два окна, расположенные на одном уровне, которые одновременно служат для наполнения и для отсечки. Когда плунжер находится в нижнем положении, через оба окна топливо затекает в надплунжерную полость.

При движении вверх в момент перекрытия окон торцем плунжера начинается активный ход плунжера, в продолжение которого топливо вытесняется в нагнетательный трубопровод. Когда винтовые кромки плунжера начинают открывать окна, активный ход плунжера заканчивается, топливо начинает поступать в отсечную полость, давление в надплунжерной полости резко падает и впрыск топлива в камеру сгорания дизеля прекращается.

Для изменения количества впрыскиваемого топлива плунжер поворачивается вокруг своей оси при помощи поворотной втулки, которая связана с рейкой ТНВД.

На ТНВД моделей 324.5, 324.5-10 и 324.5-10.01 установлены плунжерные пары с диаметром плунжера 12 мм (рис. 1346). В отличие от выше рассмотренной плунжерной пары, дозирование топлива осуществляется одновременным изменением как начала, так и конца нагнетания топлива. Для регулировки начала нагнетания на верхнем торце плунжера имеется специальная управляющая кромка. Отсечка происходит аналогично рассмотренной выше плунжерной паре. Итак, при помощи управляющей кромки и окна изменяют начало подачи, а при помощи отсечных кромок и окон – момент отсечки. При этом изменяются не только углы начала и конца подачи, но и количество впрыскиваемого топлива.

РЕГУЛЯТОР ЧАСТОТЫ ВРАЩЕНИЯ

НАЗНАЧЕНИЕ И КОНСТРУКЦИЯ

Регулятор частоты вращения механический всережимный центробежного типа предназначен для автоматического поддержания требуемой частоты вращения коленвала двигателя вне зависимости от нагрузки, обеспечения пусковой подачи топлива, устойчивой работы двигателя на холостом ходу, предохранения его от чрезмерного увеличения частоты вращения (разноса) и произвольного останова, формирования внешней скоростной характеристики подач топлива с помощью обратного корректора, а также осуществления тепловой защиты двигателя корректором по давлению наддувочного воздуха.

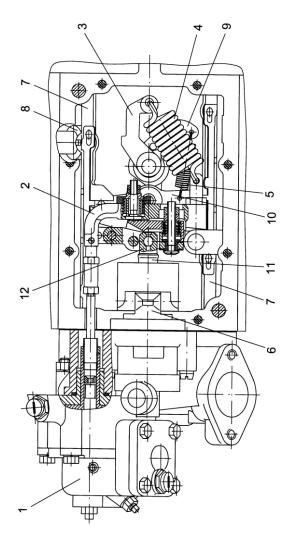


Рис. 135. Регулятор частоты вращения

1-корректор по наддуву; 2-рычаги регулятора с корректором; 3-рычаг пружины; 4-пружина регулятора; 5-пружина рычага реек; 6-державка грузов; 7-рейки топливного насоса; 8-поворотная втулка; 9-рычаг стартовой пружины; 10-рычаг реек; 11-муфта регулятора; 12-пята упорная

Регулятор частоты вращения (рис. 135) расположен в развале корпуса ТНВД и не имеет своего отдельного корпуса. Рычаги и пружины регулятора совершают качания в горизонтальной плоскости. На кулачковом валу насоса 22 (рис. 131) установлена ведущая шестерня 24 регулятора, вращение на которую передается через резиновые сухари 25 от фланца 27, неподвижно (посредством шпонки) закрепленного на кулачковом валу ТНВД.

Вращение от ведущей шестерни через промежуточную шестерню 28 передается на державку грузов 29, установленную в двух шарикоподшипниках. (Державка грузов вращается быстрее кулачкового вала в 2,33 раза.)

В державку грузов запрессованы две оси, на которых шарнирно установлены грузы регулятора сложной формы. Каждый груз имеет лапку, в которую запрессована ось, и на нее установлен ролик. Державка имеет осевое сверление, в которое входит муфта грузов 30, с напрессованным на нее упорным подшипником. В отверстие муфты 11 (рис. 135) входит упорная пята 12, которая шарнирно, посредством пальца 20 (рис. 136) соединена с рычагом рейки 1. Рычаг рейки шарнирно через палец 4 связан с рычагом муфты 5 и через штифт 22 с рейкой ТНВД. Между рычагом рейки и рычагом муфты расположен узел обратного корректора. Рычаг муфты шарнирно закреплен относительно корпуса ТНВД осью. На этой же оси шарнирно закреплен рычаг регулятора 6, который упирается в подвижный шток корректора по наддуву, являющийся номинальным упором регулятора. В рычаг регулятора завернут узел корректора 11, который на данных моделях выведен из работы (вместо пружины установлена втулка 12).

Так же к рычагу регулятора через регулировочный болт 3 подсоединена главная пружина регулятора 4 (рис. 135), второй конец которой зацеплен за рычаг пружины 3.

Рычаг пружины одним концом шарнирно установлен на ось, запрессованную в корпус ТНВД, другим концом через ось связан с рычагом управления регулятора, расположенным на верхней крышке.

На эту же ось, запрессованную в корпус, шарнирно установлен рычаг стартовой пружины 9, за который зацеплена пружина рычага реек 5. Второй конец этой пружины зацеплен за промежуточный рычаг реек 10, установленный на оси,

запрессованной в корпус насоса и связывающей между собой две рейки 7 ТНВД.

На верхней крышке шарнирно закреплен рычаг останова 2 (рис. 137), который при его перемещении действует на штифт 23 (рис. 136), запрессованный в рычаг рейки 1, и перемещает рычаги регулятора и связанные с ними рейки в сторону выключения подачи топлива.

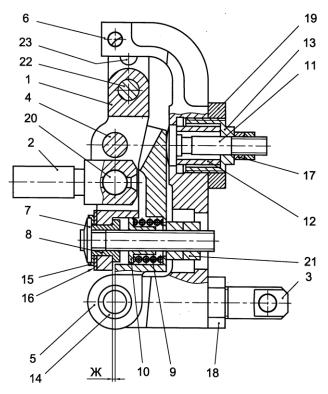


Рис. 136. Рычаги регулятора

1-рычаг рейки; 2-пята упорная; 3-болт регулировочный; 4-палец рычага муфты; 5-рычаг муфты грузов; 6-рычаг регулятора; 7-шток корректора; 8-толкатель корректора; 9-пружина обратного корректора; 10-гайка корректора; 11-корректор; 12-втулка дистанционная; 13-корпус пружины корректора; 14-втулка рычага регулятора; 15-шайба стопорная; 17-гайка М5; 18-гайка М10 х1; 19-гайка М16 х 1; 20-палец; 21-гайка М6; 22-штифт; 23-штифт.

ВЕРХНЯЯ КРЫШКА РЕГУЛЯТОРА

Верхняя крышка регулятора через паронитовую прокладку болтами крепится к корпусу насоса и обеспечивает герметичность масляной полости насоса и регулятора.

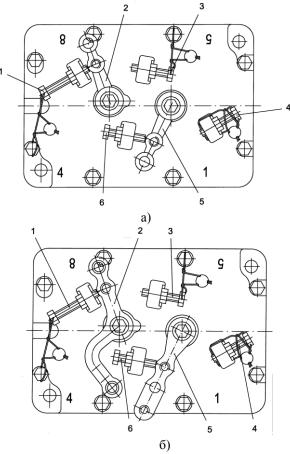


Рис. 137. Верхняя крышка регулятора:

а) и б) — варианты исполнения крышки; 1-болт ограничения пусковой подачи; 2-рычаг останова; 3-болт ограничения на выключение подачи; 4-болт ограничения максимальной частоты вращения; 5-рычаг управления регулятора; 6-болт ограничения минимальной частоты вращения.

На верхней крышке регулятора (рис. 137) расположены рычаг управления регулятора 5 и рычаг останова 2. Перемещение каждого из них ограничивается двумя регулировочными болтами. Рычаг управления ограничен болтом максимальной частоты вращения 4 и болтом минимальной частоты вращения 6. Рычаг останова ограничен болтом 1, которым регулируется пусковая подача топлива и болтом 3, ограничивающим ход рычага 2 в сторону выключения из условия обеспечения запаса хода рейки на выключение подачи (чтобы усилие от пневмоцилиндра не передавалось на рейки насоса). Болты 1, 3 и 4 регулируются на стенде и пломбируются. Болт 6 минимальной частоты вращения не пломбируется и регулируется окончательно на двигателе.

ПУСКОВОЕ УСТРОЙСТВО (ОБОГАТИТЕЛЬ)

Для обеспечения надежного пуска двигателя в регуляторе предусмотрено пусковое устройство, которое обеспечивает увеличенную подачу во время пуска двигателя. (Конструкция была рассмотрена выше при описании регулятора.)

Конструкция пускового устройства позволяет по желанию водителя производить пуск двигателя с включенной или выключенной пусковой подачей топлива.

Для того чтобы включить пусковую подачу, необходимо нажать на педаль акселератора (рычаг управления регулятора!) При этом вместе с главной пружиной регулятора под действием рычага 9 (рис. 135) деформируется и пружина рычага реек 5. Рычаги, и связанные с ними рейки насоса, устанавливаются в положение, соответствующее пусковой подаче топлива. После пуска двигателя центробежная сила грузов регулятора, преодолевая натяжение пружины 5, перемещает рычаги и присоединенные к ним рейки в сторону уменьшения подачи и выключает пусковую подачу топлива.

РАБОТА РЕГУЛЯТОРА

При работе двигателя на установившемся скоростном режиме (частота вращения коленчатого вала двигателя постоянна, рычаг управления регулятора и рейки ТНВД не перемещаются) центробежная сила грузов регулятора уравновешена усилием пружин регулятора.

Если при неизменном положении рычага управления регулятора уменьшилась нагрузка на двигатель, то частота вращения коленчатого вала двигателя, а, следовательно, и грузов регулятора увеличивается. Центробежная сила грузов будет расти, и грузы начнут расходиться, перемещая муфту, рычаги регулятора с рейками, преодолевая сопротивление пружин регулятора, в сторону уменьшения подачи топлива. Вследствие этого увеличение частоты вращения коленчатого вала двигателя прекратится. Муфта грузов и рычаги с рейками займут новое равновесное положение, но уже при более увеличенной по сравнению с исходной частоте вращения коленчатого вала двигателя.

Когда нагрузка на двигатель возрастает, происходит обратный процесс, при котором грузы регулятора сходятся, муфта грузов, рычаги регулятора и рейки под действием усилия пружин регулятора переместятся в сторону увеличения подачи топлива. Новое равновесное положение будет при меньшей по сравнению с исходной частоте вращения коленчатого вала двигателя.

Если на установившемся режиме работы двигателя переместить рычаг управления в сторону увеличения усилия пружин регулятора, то это вызовет перемещение рычагов регулятора с рейками в сторону увеличения подачи топлива. Частота вращения двигателя будет увеличиваться до тех пор, пока растущая центробежная сила грузов не уравновеситься усилием пружин регулятора. Двигатель перейдет на другой установившийся скоростной режим работы. Таким образом, каждое перемещение рычага управления вызывает изменение усилия натяжения пружин регулятора, а вслед соответствующее изменение скоростного режима двигателя. В реальных условиях эксплуатации автомобиля одновременно меняется момент сопротивления обычно движению, т.е. изменяется нагрузка на двигатель и частота вращения его коленвала, а так же положение рычага управления регулятора, поэтому процесс установления равновесного режима протекает более сложно.

НАЗНАЧЕНИЕ, КОНСТРУКЦИЯ, РАБОТА И РЕГУЛИРОВКА ОБРАТНОГО КОРРЕКТОРА

Скоростные характеристики цикловой подачи топлива при постоянном положении рейки ТНВД таковы, что «прямое корректирование», т.е. движение рейки в сторону увеличения подачи топлива не требуется, а необходимо только «обратное корректирование», т.е. движение рейки в сторону уменьшения подачи топлива. Для этой цели и служит обратный корректор.

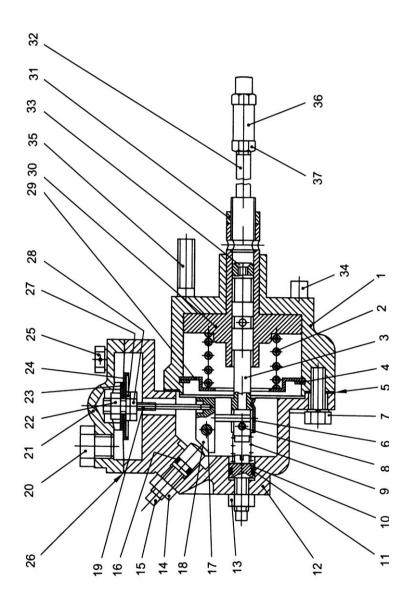
Обратный корректор (рис. 136) состоит из штока 7, который при помощи толкателя 8 и двух специальных стопорных шайб 15 и 16, фиксируется в рычаге рейки 1. На шток корректора наворачивается специальная гайка 10, которая служит для регулировки предварительного натяжения пружины 9. На шток 7 со стороны рычага муфты 5 навернуты две гайки 21, законтренные между собой, которые служат для регулировки хода обратного корректора (зазора между рычагом реки и рычагом муфты «Ж»).

Работа обратного корректора состоит в следующем: При номинальной частоте вращения усилие грузов регулятора таково, что оно сжимает пружину обратного корректора 9 и зазор «Ж» между рычагом рейки и муфты равен нулю.

При снижении частоты вращения, в какой то момент усилия грузов регулятора и сжатой пружины обратного корректора становятся равными. При дальнейшем уменьшении частоты вращения, т.е. уменьшении усилия грузов пружина обратного корректора начинает разжиматься и перемещать рычаг реек с рейками в сторону уменьшения подачи топлива. Это происходит до тех пор, пока будет уменьшаться частота вращения и законтренные между собой гайки 21 не коснуться рычага муфты 5.

Обратный корректор имеет две регулировки:

1 Вращение штока корректора 7 при законтренных между собой гайках 21. При этом перемещается специальная гайка 10 и изменяет преднатяг пружины обратного корректора, который ведет к изменению частоты вращения, соответствующей началу работы обратного корректора. Этой регулировкой пользуются при настройке требуемой цикловой подачи топлива в диапазоне частот вращения близких к номинальной.


2 Вращение гаек 21 при неподвижном штоке обратного корректора 7. При этом изменяется зазор «Ж» между рычагом рейки и муфты. Этой регулировкой пользуются при настройке требуемой цикловой подачи в диапазоне малых частот вращения.

НАЗНАЧЕНИЕ, КОНСТРУКЦИЯ, РАБОТА И РЕГУЛИРОВКА КОРРЕКТОРА ПО НАДДУВУ

Корректор по давлению наддувочного воздуха уменьшает подачу топлива при снижении давления наддува 0,4...0,45 к Γ с/см², тем самым осуществляется тепловая защита двигателя. Корректор по наддуву показан на (рис. 138). Корпус корректора 1 имеет резьбовое отверстие для подвода масла от системы смазки двигателя. В корпусе 1 установлен поршень 30 с золотником 3. На поршень действует установленная с преднатягом пружина 2, зафиксированная тарелкой 29 и упорным кольцом 4. В поршень завернута шпилька 32, законтренная гайкой 31 с наконечником 36, являющимся номинальным упором в регуляторе. Наконечник 36 контрится гайкой 37. На золотник 3 действует пружина 9, предварительное натяжение которой регулируется винтом 10 с резиновым уплотняющим кольцом 11. Винт 10 контрится гайкой 13. К корпусу корректора 1 через паронитовую прокладку 5 с помощью трех болтов 7 прикреплен корпус мембраны 12. В корпус мембраны 12 установлен узел мембраны со штоком дет.19, 22, 23, 24, 26, 27, 28. Мембрана 26 зажата между корпусом 12 и крышкой 21 четырьмя болтами 25. В крышке 21 имеется резьбовое отверстие для подвода воздуха от впускного коллектора двигателя.

Рис. 138. Корректор подачи топлива по наддуву

1-корпус корректора; 2-пружина поршня; 3-золотник корректора; 4-кольцо пружинное упорное; 5-прокладка корпуса мембраны; 6-фиксатор штифта; 7-болт М6 х 20; 8-штифт золотника; 9-пружина корректора; 10-винт регулировочный; 11-кольцо уплотнительное; 12-корпус мембраны; 13-гайка М6; 14-гайка; 15-винт регулировочный; 16-кольцо уплотнительное; 17-ось рычага; 18-рычаг корректора; 19-шток; 20-пробка М10 х 1,25; 21-крышка мембраны; 22-гайка М6; 23-шайба; 24-тарелка; 25-болт М6 х 20; 26-мембрана; 27-втулка штока; 28-гайка М3; 29-тарелка пружины 30-поршень корректора; 31-гайка М10 х 1; 32-шпилька; 33-винт М10 х 1; 34-центрирующая втулка; 35-шпилька М8 х 30; 36-наконечник шпильки; 37-гайка М7.

В корпусе мембраны 12 на оси 17 установлен рычаг корректора 18, поворот которого ограничен регулировочным винтом 15 с резиновым уплотняющим кольцом 16. Винт 15 контрится гайкой 14. Рычаг корректора 18 через стержень связан со штифтом 8 установленным в золотнике.

Корректор по наддуву в сборе крепится на задней крышке регулятора двумя винтами и шпилькой с гайкой.

РАБОТА КОРРЕКТОРА ПО НАДДУВУ

Корректор по наддуву не прямого действия. Через резьбовое отверстие в крышке 21 (рис. 138) в полость мембраны подводится воздух из впускного коллектора двигателя. Когда избыточное давление воздуха в полости мембраны более 0,4 кГс/см², усилие, создаваемое этим давлением, передается через шток 19, рычаг 18 и золотник 3 на пружину 9, которая сжимается. Рычаг 18 упирается в регулировочный болт 15, а золотник занимает крайнее левое положение. При движении влево золотник закрывает специальные окна в поршне 30, через которые происходит истечение масла. Масло от системы смазки двигателя подается через резьбовое отверстие и жиклер Ø 0,7 мм в корпусе корректора 1 под поршень 30. Поршень, под действием этого давления, сжимая пружину 2, перемещается влево вслед за золотником до тех пор, пока не откроются окна в поршне и золотнике, и масло пойдет на слив. При этом устанавливается постоянный расход масла через корректор. Слив идет через втулку 34 и отверстия в поршне в заднюю крышку регулятора.

При уменьшении давления воздуха в полости мембраны ниже 0,4 кГс/см² усилие пружины 9, действующей на золотник, становится больше усилия, создаваемого наддувочным воздухом, которое через шток мембраны и рычаг корректора 18 также передается на золотник. Золотник начинает двигаться вправо до тех пор, пока не наступит равновесие сил, действующих на него. При движении золотника вправо сильно открываются окна в поршне 30 и масло идет на слив. При этом поршень под действием пружины 2 перемещается вслед за золотником пока снова не установится равновесный режим с постоянным расходом масла через корректор.

Итак, при изменении положения золотника 3, поршень корректора 30 всегда перемещается вслед за ним (следящая

система). Вместе с поршнем перемещается ввернутая в него шпилька с наконечником 32 и 36, в который упирается рычаг регулятора, т.е. в итоге перемещаются рейки насоса, изменяя цикловую подачу топлива.

РЕГУЛИРОВКА КОРРЕКТОРА ПО НАДДУВУ

Корректор по наддуву имеет две внешние регулировки (винты 10 и 15 и внутри регулятора наконечник штока 36). Винтом 10 изменяется предварительное натяжение пружины корректора 9. При этом меняется начало срабатывания корректора ПО давлению наддувочного воздуха. заворачивании винта 10 увеличивается преднатяг пружины 9 и соответственно увеличивается давление, корректора соответствующее началу срабатывания корректора по наддуву. При выворачивании винта 10 – уменьшается. Винтом 15 регулируется номинальная цикловая подача $(P\kappa=1 \kappa \Gamma c/cm^2)$. При заворачивании винта 15 подача уменьшается. При выворачивании винта 15 подача увеличивается до определенного уровня, после которого вращение винта не ведет к увеличению подачи! (При вращении винта 15 цикловая подача при Рк=0 кГс/см² не меняется.) Цикловую подачу при Рк=0 кГс/см² можно изменить, поворачивая наконечник шпильки 31, расконтрив гайку 37. При заворачивании наконечника 36 на шпильку 32 подача будет увеличиваться, при отворачивании уменьшаться. (Одновременно с изменением цикловой подачи при $P\kappa=0$ к Γ с/см 2 будет также меняться и подача при $P\kappa=1$ к Γ с/см 2)

ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ КОРРЕКТОРА ПО НАДДУВУ И СПОСОБЫ ИХ УСТРАНЕНИЯ

1 Разгерметизация полости мембраны корректора по наддуву или повреждение мембраны приводит к уменьшению подачи топлива и снижению мощности двигателя.

Необходимо восстановить герметичность полости мембраны, а если мембрана повреждена, то заменить ее. Также необходимо следить за герметичностью соединений и трубопроводов, подводящих воздух от впускного коллектора двигателя к корректору по наддуву.

2 Прекращение подачи масла в корректор по наддуву также ведет к уменьшению подачи топлива и снижению мощности двигателя.

Необходимо восстановить подачу масла в корректор по наддуву. (Одной из причин может быть засорение жиклера \emptyset 0,7 мм на входе корректора по наддуву!)

Необходимо также отметить, что масло в ТНВД поступает только через корректор по наддуву!

Если возникла необходимость в снятии корректора по наддуву, то необходимо замерить размер выступания наконечника шпильки 36 (рис. 138). После того как корректор по наддуву будет установлен на ТНВД, необходимо выставить этот размер, законтрив наконечник 36 гайкой 37.

ТОПЛИВОПОДКАЧИВАЮЩИЙ НАСОС

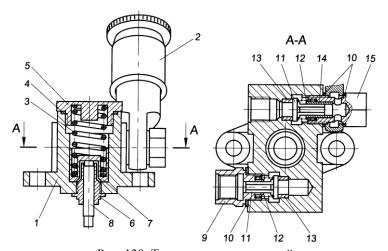


Рис. 139. Топливоподкачивающий насос

1-корпус топливного насоса; 2-насос ручной прокачки топлива; 3-пружина поршня; 4-прокладка; 5-пробка пружины; 6-втулка штока толкателя; 7-поршень; 8-шток толкателя; 9-корпус клапана; 10-прокладка; 11-клапан; 12-пружина клапана; 13-седло клапана; 14-втулка корпуса цилиндра; 15-болт крепления корпуса цилиндра

Топливоподкачивающий насос (ТПН) предназначен для подачи топлива из бака автомобиля к топливному насосу

высокого давления. Он устанавливается на ТНВД на задней крышке регулятора на двух шпильках и крепится гайками.

В корпусе 1 ТПН (рис. 139) размещен поршень 7, на который действует пружина 3, установленная с преднатягом. Пружина упирается в пробку 5, завернутую в корпус. Герметичность обеспечивается прокладкой 4.

В корпус 1 на эпоксидном клее завернута втулка 6, в которую установлен шток 8. (Шток и втулка представляют собой прецизионную пару, поэтому заменяться могут только комплектно!) В корпус запрессованы стальные седла 13, к которым пружинами 12 прижаты впускной и нагнетательный клапаны 11, изготовленные из полиамида.

Нагнетательный клапан установлен в корпус клапана 9, который через медную прокладку 10 завернут в корпус ТПН.

Впускной клапан установлен в специальный болт 15, которым через медные прокладки к корпусу ТПН прикреплен насос ручной прокачки топлива, показанный на (рис. 140).

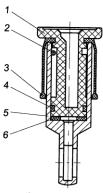


Рис. 140. Насос ручной прокачки топлива 1-поршень; 2-штифт; 3-чехол защитный; 4-кольцо уплотнительное; 5-цилиндр;6-прокладка.

Этот насос предназначен для прокачки топливной системы с целью удаления воздуха перед пуском двигателя.

В цилиндр 5 (рис. 140), изготовленный из алюминиевого сплава, установлен пластмассовый поршень 1 с резиновым кольцом 4. Поршень относительно корпуса фиксируется при помощи штифта 2, а герметичность обеспечивается резиновой плоской прокладкой 6 и чехлом 3.

Привод топливоподкачивающего насоса осуществляется от эксцентрика 26 (рис. 131), установленного на кулачковом валу топливного насоса. Эксцентрик действует на толкатель 12 с

роликом, перемещающийся в расточке задней крышки регулятора и зафиксированный винтом. Сверху толкатель прижат пружиной, упирающейся в корпус ТПН.

РАБОТА ТОПЛИВОПОДКАЧИВАЮЩЕГО НАСОСА

Для заполнения магистрали низкого давления топливом после технического обслуживания системы питания необходимо повернуть поршень 1 (рис. 140) против часовой стрелки и сделать несколько качков. При этом при ходе поршня вверх открывается всасывающий клапан, и топливо затекает под поршень (нагнетательный клапан закрыт). При ходе поршня вниз всасывающий клапан закрывается, а нагнетательный клапан открывается, и топливо вытесняется в нагнетательный топливопровод.

После прокачки необходимо рукоятку отпустить до упора вниз и повернуть её по часовой стрелке. При этом торец поршня 1, действуя на резиновую прокладку 6, загерметизирует полость всасывания.

После пуска двигателя эксцентрик, расположенный на кулачковом валу, набежит на ролик и толкатель через шток 8 (рис. 139) перемещает вверх поршень 7.

При этом всасывающий клапан закрывается, и топливо перетекает из надпоршневой полости в подпоршневую, а также частично через открывающийся нагнетательный клапан в нагнетательный трубопровод (это происходит из-за разницы надпоршневого и подпоршневого объёмов.) При перемещении поршня 7 вниз под действием пружины 3 открывается всасывающий клапан, и топливо поступает в надпоршневую полость. Одновременно через открытый нагнетательный клапан топливо из подпоршневой полости поступает в нагнетательный трубопровод. В случае повышения давления в нагнетательном трубопроводе (например, при засорении фильтра тонкой очистки топлива), усилие пружины 3 оказывается недостаточным и поршень 7 «зависает» в верхнем положении, что приводит к прекращению подачи топлива в нагнетательный трубопровод.

ВНИМАНИЕ! ДЛЯ НОРМАЛЬНОЙ РАБОТЫ ТІІН НЕОБХОДИМО СЛЕДИТЬ И ВО ВРЕМЯ ОБСЛУЖИВАТЬ ФИЛЬТР ТОНКОЙ ОЧИСТКИ ТОПЛИВА.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ ТПН

ТПН необходимо проверять при обслуживании топливного насоса высокого давления.

Для проверки герметичности ТПН во всасывающий топливопровод подают воздух под давлением 4 к Γ с/см 2 . При перекрытом нагнетательном топливопроводе не допускаются утечки воздуха в течение трех минут.

Проверяют производительность ТПН, которая должна быть не менее 3 л/мин, максимальное давление не менее 4,5 к Γ с/см 2 при полностью закрытом сечении нагнетательного топливопровода, разряжение не менее 0,5 к Γ с/см 2 при полностью закрытом сечении всасывающего топливопровода.

требований При невыполнении этих необходимо полностью разобрать ТПН. заменить износившиеся вышелшие ИЗ строя детали, притереть или заменить пластмассовые клапана.

ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ ТПН

- 1 Внедрение в головки пластмассовых клапанов твердых частиц, износ уплотняющих поверхностей, приводящие к потере герметичности между седлом и клапаном.
 - 2 Поломка пружины поршня.
 - 3 Срыв резьбовых соединений корпуса ТПН.
 - 4 Заклинивание поршня в корпусе ТПН.
 - 5 Заклинивание штока во втулке.

Все эти неисправности, кроме срыва резьб, являются следствием использования топлива с большим содержанием серы, механических примесей и воды.

ПЕРЕПУСКНОЙ КЛАПАН

Перепускной клапан 8 (рис. 131) служит для создания необходимого давления (1,3 ... 1,9 кГс/см²) в каналах низкого давления ТНВД. Избыточное топливо, подаваемое ТПН в каналы низкого давления, через перепускной клапан поступает на слив. При неработающем двигателе перепускной клапан обеспечивает герметичность полости низкого давления ТНВД, что обеспечивает надежный пуск двигателя.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ ТНВД

В процесс эксплуатации топливного насоса высокого давления при износе основных деталей нарушаются регулировочные параметры ТНВД.

Необходимо еще раз отметить, что смазка ТНВД централизованная от системы смазки двигателя через корректор по наддуву с жиклером \emptyset 0,7 мм, который может засориться в процессе работы. При этом ТНВД может остаться без смазки и выйти из строя.

Для снижения износов прецизионных деталей не допускается работа ТНВД без фильтрующих элементов или с засоренными фильтрами тонкой очистки топлива.

При необходимости или через первые 100000 км пробега автомобиля необходимо снять ТНВД с двигателя и проверить его на стенде на соответствие технических требований.

Проверка и при необходимости регулировка топливного насоса должна выполняться квалифицированным специалистом в условиях мастерской на специальном регулировочном стенде, оборудованном приборами и приспособлениями в соответствии с требованиями ГОСТ 10578-96. Стенд должен быть оборудован дополнительной системой подвода фильтрованного масла $M10\Gamma_2$ K к топливному насосу под давлением 2,5 ± 0,25 кГс/см² и системой подвода сжатого воздуха с устройством для плавного регулирования давления от 0 до 1 кГс/см²

Испытания топливных насосов следует поводить на дизельном топливе марки Л по ГОСТ 305-82 или на технической жидкости, имеющей вязкость от 3,5 до 5,0 $\text{мm}^2/\text{c}$ (сСт) при температуре 25 ... 30°C.

Температура дизельного топлива на входе в ТНВД при контроле цикловых подач должна быть 32 ± 2 °C.

Геометрическое начало нагнетания (ГНН) секциями насоса определятся методом пролива при вращении кулачкового вала по часовой стрелке, если смотреть со стороны привода ТНВД, который состоит в следующем:

- рейки насоса устанавливаются в положение, соответствующее максимальной подаче, до упора в направляющие втулки (без рычагов регулятора).
- топливо под давлением 2...2,5 к Γ с/см 2 при заглушенном выходном отверстии перепускного клапана подается в систему низкого давления ТНВД. (При этом из штуцеров насоса течет топливо)
- кулачковый вал насоса медленно прокручивается по часовой стрелке.
- за ГНН принимается момент окончания струйного истечения топлива из штуцера насоса, который фиксируется по лимбу регулировочного стенда.

Предварительный ход плунжера от начала его движения до геометрического начала нагнетания (ГНН) в первой секции должен быть:

Модель ТНВД	ГНН 1 ^{ой} секции ТНВД
323.5, 323.5 – 11	$5,65 \pm 0,05 \text{ mm}$
324.5, 324.5 – 10, 324.5 –10.01	$4,85 \pm 0,05 \; \mathrm{mm}$

Порядок работы секций ТНВД и углы поворота кулачкового вала, соответствующие ГНН в секциях насоса и их отклонение должны быть следующие:

Порядок работы секций ТНВД	1	4	2	5	3	6
Углы поворота кулачкового вала, соответствующие ГНН	۰0	45°±30′	120°±30′	,0€∓₃0,	240⁰±30′	285°±30′

Регулировка ГНН производится заменой пяты толкателя. Изменение толщины пяты толкателя на 0,05 мм (одна группа) соответствует изменению угла поворота кулачкового вала на 8'.

Для установки более раннего начала нагнетания необходимо установить пяту толкателя большей толщины, а для

установки более позднего – меньшей толщины. Пяты толкателя промаркированы.

«О» группа пяты имеет толщину 4 мм.

- (-1) группа 3,95 мм, (-2) группа 3,9 и т.д.
- (+1) группа 4,05 мм, (+2) группа 4,1 и т.д.

Для ТНВД модели 323.5 применяются пяты от (-25) до (+1), а для модели 324.5 от (-9) до (+16).

Давление открытия нагнетательных клапанов должно соответствовать $0,4 \dots 0,75 \text{ к}\Gamma\text{c/cm}^2$. (Регулировка конструкцией не предусмотрена!)

Значения цикловых подач топлива по секциям насоса проверяют на регулировочном стенде со стендовым комплектом форсунок, в качестве которых используются форсунки модели 274, укомплектованные распылителями с эффективным проходным сечением $\mu f = 0.255 \text{ мм}^2$.

Форсунки должны быть отрегулированы на давление начала впрыскивания 275 ... 281 к Γ с/см 2 .

В качестве стендовых топливопроводов высокого давления применяют ТВД 740-1104306. (Наружный диаметр – 7мм, внутренний диаметр – 2 мм, длина – 618 мм.)

ПРОВЕРКА И РЕГУЛИРОВКА ЦИКЛОВЫХ ПОДАЧ ТОПЛИВА СЕКЦИЯМИ ТНВД

К корректору по наддуву необходимо подвести масло под давлением $2.5 \pm 0.25 \ \kappa \Gamma c/cm^2$.

Давление воздуха на входе корректора по наддуву (Рк) должно соответствовать значениям приведенным в таблицах.

Частота вращения кулачкового вала ТНВД, соответствующая началу выключения подачи топлива при упоре рычага управления регулятором в болт ограничения максимального скоростного, режима должна быть:

Модель ТНВД	Pκ, (κΓc/cm²)	Частота вращения кулачкового вала (мин ⁻¹)
323.5, 324.5	0,61	10301050
323.5-11,	0,61	10701090
324.5-10,		
324.5-10.01		

При этом частота вращения кулачкового вала, соответствующая началу выключения пусковой подачи должна быть для всех моделей ТНВД от 230 до 280 Muh^{-1} .

Полное выключение подачи топлива должно быть:

Модель ТНВД	Pκ, (κΓc/cm²)	Частота вращения кулачкового вала (мин ⁻¹)
323.5, 324.5	0,61	не более 1200
323.5-11, 324.5-10, 324.5-10.01	0,61	не более 1200

Подрегулировка производиться болтом ограничения максимальной частоты вращения 4 на верхней крышке регулятора (рис. 137).

Давление топлива на входе в ТНВД должно быть 1,3...1,9 к Γ с/см². При упоре рычага управления в болт ограничения максимальной частоты вращения значения цикловых подач должны быть следующими:

Модель ТНВД	Частота вращения кулачкового вала (мин ⁻¹)	Давление воздуха на входе корректора по наддуву, (кГс/см²)	Средняя цикловая подача топлива, (мм ³ /цикл)	Неравно мерность подач σ (%) не более
	1000±10	0,61	145149	5
323.5	850±10	0,61	$q_{\mu}^{HOM} + (611)$	_
	650±10	0,61	$q_{\mu}^{\text{HOM}} + (1319)$	8
	500±10	0,61	$q_{_{\rm II}}^{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}$	10
	650±10	0,3±0,01	148154	_
	650±10	00,1	118,5125,5	_
	100±10	0	210240	_
323.5–11	1050±10	0,51	130134	5
	850±10	0,51	$q_{\mu}^{\text{HOM}} + (49)$	-
	650±10	0,51	$q_{\mu}^{\text{HOM}} + (915)$	8
	500±10	0,51	q _ц +27 не более	10
	650±10	0,3±0,01	134140	_
	650±10	00,1	118,5125,5	_
	100±10	0	210240	_

Модель ТНВД	Частота вращения кулачкового вала (мин ⁻¹)	Давление воздуха на входе корректора по наддуву, (кГс/см²)	Средняя цикловая подача топлива, (мм ³ /цикл)	Неравно мерность подач σ (%) не более
	980±10	0,61	179183	5
324.5	850±10	0,61	$q_{\mu}^{\text{HOM}} \pm 5$	_
	650±10	0,61	$q_{\mu}^{HOM} + (712)$	8
	500±10	0,61	$q_{\scriptscriptstyle \rm II}^{\scriptscriptstyle \rm HOM}$ +20 не более	10
	650±10	0,3±0,01	164170	_
	650±10	00,1	161167	_
	100±10	0	240260	_
324.5–10 324.5–10.01	1030±10	0,61	164168	5
	850±10	0,61	$q_{\mu}^{\text{HOM}} \pm 3$	_
	650±10	0,61	$q_{\mu}^{\text{HOM}} + (38)$	8
	500±10	0,61	$q_{\mu}^{\text{ ном}}$ +15 не более	10
	650±10	0,3±0,01	151157	_
	650±10	00,1	146152	_
	100±10	0	240260	_

где $q_{_{\text{II}}}^{_{\text{HOM}}}$ – среднее значение номинальной цикловой подачи.

Величина средней цикловой подачи рассчитывается, как сумма подач всех секций, деленная на количество секций.

Неравномерность подачи топлива по секциям рассчитывается по формуле:

$$\delta = rac{2*\left(q_{u}^{\max} - q_{u}^{\min}
ight)}{q_{u}^{\max} + q_{u}^{\min}} *100\%$$
 где

 q_{u}^{\max} – максимальная цикловая подача по секциям,

 $q_{\scriptscriptstyle \mu}^{\rm min}$ – минимальная цикловая подача по секциям

Величина средней цикловой подачи на номинальном режиме ($q_{\mu}^{\text{ном}}$) и $P_{\kappa}=0,6...1~\kappa\Gamma c/cm^2$ регулируется винтом 15 на корректоре по наддуву (рис. 130). При выворачивании винта 15 подача увеличивается, а при заворачивании – уменьшается.

Цикловая подача топлива каждой секцией насоса регулируется разворотом секций 2 ТНВД (рис. 131). (при повороте фланца секции против часовой стрелки подача увеличивается, а при повороте по часовой стрелке — уменьшается.)

Цикловая подача при частотах вращения кулачкового вала 850, 650 и 500 мин⁻¹ ($P\kappa$ =0,6...1 к Γ c/cм²) регулируется с помощью обратного корректора (рис. 128).

При n=850 и n=650 мин⁻¹ регулировка производится изменением преднатяга пружины обратного корректора 9 (гайки M6 21 законтрены между собой.)

При повороте штока 7 против часовой стрелки преднатяг пружины 9 увеличивается, а подача при n=850 и n=650 мин⁻¹ уменьшается. При повороте штока 7 по часовой стрелке преднатяг пружины уменьшается, а подача увеличивается.

После регулировки шток 7 обратного корректора фиксируется от поворота относительно рычага рейки 1 с помощью стопорной шайбы 16.

При n=500 мин⁻¹ регулировка производится изменением зазора «Ж» между рычагом рейки 1 и рычагом муфты 5.

При отворачивании гаек 21 увеличивается зазор «Ж» в рычагах, подача при n=500 мин $^{-1}$ уменьшается, а при заворачивании гаек 21, зазор «Ж» в рычагах уменьшается, а подача увеличивается.

После окончания регулировки гайки 21 должны быть надежно законтрены между собой.

Цикловая подача при частотах вращения кулачкового вала n=650 мин $^{-1}$ и Pк=0,3 ± 0,01 к Γ с/см 2 , P_{κ} =0...0,1 к Γ с/см 2 регулируется с помощью корректора по наддуву (рис. 130).

Регулировка при n=650 мин⁻¹ и $Pk=0,3\pm0,01$ к Γ с/см² производится винтом 10 на корректоре по наддуву. При заворачивании винта 10 увеличивается натяжение пружины корректора 9 и цикловая подача уменьшается (при выворачивании винта 10 – увеличивается)

Регулировка при n=650 мин⁻¹ и $P_{\kappa}=0...0,1$ к Γ с/см² производиться изменением положения наконечника шпильки 36. При заворачивании наконечника 36 на шпильку 32 подача будет увеличиваться, при отворачивании – уменьшаться.

Если в процессе подрегулировки положение наконечника шпильки 36 было изменено, то после этого необходимо

восстановить цикловую подачу на номинальном режиме при P_{κ} =0,6...11 $\kappa\Gamma$ c/cm² винтом 15 на корректоре по наддуву.

Регулировка пусковой подачи топлива при n=100 мин $^{-1}$ (Рк=0к Γ с/см 2) производится винтом 1 на верхней крышке регулятора (рис. 137). При заворачивании винта 1 пусковая подача уменьшается.

После пусковой регулировки подачи проверить номинальную подачу топлива при Рк=0,6...1 кГс/см², которая может уменьшиться, так как положение ТНВД на номинальном режиме и на режиме, соответствующем пусковой подаче, близки случае необходимо другу. ЭТОМ выкрутить друг регулировочный винт 1 на верхней крышке регулятора на столько, чтобы восстановилась номинальная подача топлива. (При этом пусковая подача будет несколько завышена!)

При упоре рычага управления регулятором в болт 6 (рис. 137) ограничения минимальной частоты вращения для всех выше указанных ТНВД при $n=300~\text{мин}^{-1}$ и $q_{\rm ц}=15...~20~\text{мм}^3/\text{цикл}$ неравномерность подач не должна превышать 40%. Регулировка цикловой подачи производится болтом 6. При заворачивании болта 6 подача увеличивается, а при выворачивании – уменьшается.

При упоре рычага управления в болт 6 полное выключение подачи должно быть при n=400 мин⁻¹ не более.

Подача топлива секциями ТНВД при переводе рычага останова 2 в положение «выключено» должна с любого режима работы насоса полностью выключаться.

Проверка совпадения риски на корпусе гасителя крутильных колебаний со стрелкой указателя, установленного на корпусе ТНВД моделей 324.5, 324.5-10 и 324.5-10.01, проводится после полной подрегулировки насоса.

Метки должны совпадать в момент, соответствующий ГНН $1^{\frac{0\dot{H}}{2}}$ секции, но при этом рейки должны находиться не в положении, соответствующем максимальной подаче, до упора в направляющие втулки, а в положении пусковой подачи. (Рычаг управления регулятором на упоре в болт ограничения максимальной частоты вращения.)

Методика определения ГНН аналогична описанной выше. В таком положении кулачкового вала ТНВД в дальнейшем должен устанавливаться на двигатель!

Совпадение меток на ТНВД моделей 323.5 и 323.5-11 можно проверить при любом положении реек насоса от максимального при упоре в направляющие втулки до номинального, соответствующего номинальной подаче топлива.

Топливные насосы должны быть герметичны, наружные течи не допускаются.

Количество топлива, просочившегося в полость кулачкового вала ТНВД, не должна превышать 3 см³/час.

ПЛОМБИРОВКА

Всего на ТНВД установлено 8 пломб:

- две пломбы на защитных кожухах (рис. 131)
- три пломбы на верхней крышке регулятора (рис. 137). (болт максимальной частоты вращения 4, болт ограничения пусковой подачи 1, болт ограничения перемещения рычага останова 3)
- три пломбы на корректоре по наддуву (рис. 138 и 131). (винт ограничения номинальной подачи 15, винт регулировки давления начала срабатывания 10, болт 25 крепления крышки мембраны)

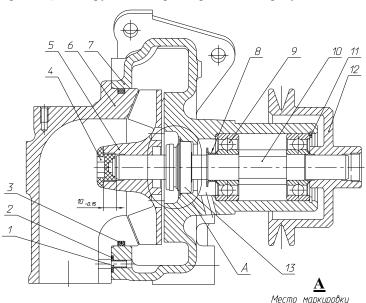
ВНИМАНИЕ: СНЯТИЕ ПЛОМБ В ГАРАНТИЙНЫЙ ПЕРИОД ЭКСПЛУАТАЦИИ ЗАПРЕЩЕНО.

ПРЕДУПРЕЖДЕНИЯ

НА ДВИГАТЕЛЯХ, УКОМПЛЕКТОВАННЫХ V-ОБРАЗНЫМ ТНВД МОДЕЛЕЙ 323.5, 323.5–11, 324.5, 324.5–10, 324.5–10.01, РЕГУЛИРОВАТЬ:

1. МАКСИМАЛЬНУЮ ЧАСТОТУ ВРАЩЕНИЯ НА ХОЛОСТОМ ХОДУ, НЕ БОЛЕЕ:

ЯМЗ-236НЕ
 ЯМЗ-236НЕ2
 ЯМЗ-236НЕ2
 ЯМЗ-236НЕ2-20, ЯМЗ-236БЕ2-14
 2370.


2. УСТАНОВОЧНЫЙ УГОЛ ОПЕРЕЖЕНИЯ ВПРЫСКИВАНИЯ ТОПЛИВА:

– ЯМЗ-236НЕ
 – ЯМЗ-236НЕ2, БЕ2
 6° – 7°.

приложение 3

ВОДЯНОЙ НАСОС С ТОРЦОВЫМ УПЛОТНЕНИЕМ ФИРМЫ «КАСО»

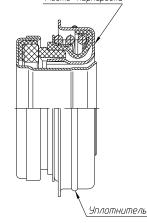

С августа 2006 года двигатели ЯМЗ комплектуются водяными насосами с торцовым уплотнением фирмы «КАСО» (Германия), конструкция которого приведена на рисунке 141.

Рис. 141. Водяной насос с торцовым уплотнением "КАСО"

1 — втулка; 2, 3 — уплотнительные кольца; 4 — заглушка; 5 — крыльчатка; 6 — подводящий патрубок; 7 — корпус; 8 — водосбрасыватель; 9 — подшипники; 10 — вал; 11 — стопорное кольцо; 12 — шкив; 13 — торцовое уплотнение;

А - торцовое уплотнение "КАСО".

Взаимозаменяемость нового водяного насоса с насосами, на которых устанавливалось торцовое уплотнение прежней конструкции, сохранена.

Водяной насос с торцовым уплотнением фирмы «КАСО» имеет маркировку на корпусе 236-1307010-Б2.

РАЗБОРКА И СБОРКА ВОДЯНОГО НАСОСА С УПЛОТНЕНИЕМ «КАСО»

ПОРЯДОК СНЯТИЯ И РАЗБОРКИ ВОДЯНОГО НАСОСА

Порядок снятия и разборки водяного насоса с уплотнением «КАСО» в основном такой же, как для водяного насоса прежней конструкции. Основное отличие заключается в том, что уплотнение «КАСО» запрессовано одновременно и в корпус и на вал. Поэтому выпрессовка вала с подшипниками производится до тех пор, пока вал не вышел из соединения с уплотнением.

В случае износа торцовое уплотнение «КАСО» восстановлению не подлежит и требует замены.

ПОРЯДОК СБОРКИ ВОДЯНОГО НАСОСА

Сборку водяного насоса с уплотнением «КАСО» производить в той же последовательности, что и насос прежней конструкции. Основное отличие заключается в том, что уплотнение «КАСО» устанавливается до установки шкива. При этом необходимо выполнить следующие операции:

- 1. Установить корпус насоса в сборе с валом и подшипниками через специальную проставку 5 вертикально на жесткую опору 7, которая имеет внутреннее отверстие для размещения установочного винта 6 (см. рисунок 142).
- 2. Установить свободно (без усилий) на верхний конец вала торцовое уплотнение «КАСО» 1.
- 3. Установить в расточку корпуса насоса специальный кондуктор 2 и оправку 3, обеспечив соприкосновение внутренней расточки оправки 3 с уплотнением 1.
- 4. Для исключения передачи усилия напрессовки на тела качения подшипников 4 необходимо выбрать «люфт» в подшипниках, для чего вворачивать установочный винт 6 в

резьбовое отверстие проставки 5 до тех пор, пока корпус насоса «от руки» не начнет поворачиваться на подшипниках вокруг вертикальной оси. После чего винт 6 необходимо вывернуть примерно на 0,25...0,3 оборота. При этом корпус насоса не должен «от руки» поворачиваться.

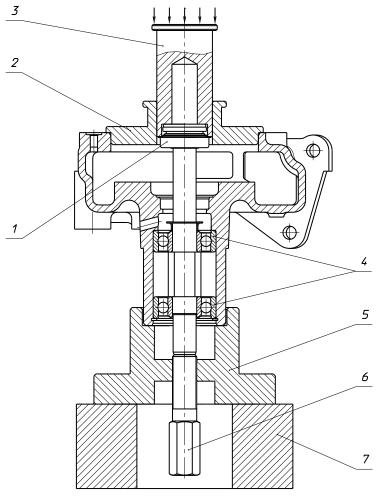


Рис.142. Установка торцового уплотнения "КАСО"

1 — торцовое уплотнение; 2 — кондуктор; 3 — оправка; 4 — подшипники; 5 — проставка; 6 — установочный винт; 7 — опора.

5. Запрессовать уплотнение 1 в корпус насоса и одновременно на вал, прилагая усилие к торцу оправки 3.

Далее сборку водяного насоса производить в той же последовательности, что и насос прежней конструкции, начиная с напрессовки шкива на вал. При этом подсборку крыльчатки насоса с деталями прежнего уплотнения исключить из-за отсутствия необходимости.

ВНИМАНИЕ: ТОРЦОВОЕ УПЛОТНЕНИЕ «КАСО» НЕ ДОПУС-КАЕТСЯ УСТАНАВЛИВАТЬ В КОРПУС ВОДЯНОГО НАСОСА, ИЗГОТОВЛЕННЫЙ ДО АВГУСТА 2006 ГОДА, ТАК КАК ПРИ ЭТОМ НЕ ОБЕСПЕЧИВАЕТСЯ НАТЯГ И ГЕРМЕТИЧНОСТЬ В СОЕДИНЕНИИ УПЛОТНЕНИЯ С КОРПУСОМ.

ТОРЦОВОЕ УПЛОТНЕНИЕ ПРЕЖНЕЙ КОНСТРУКЦИИ МОЖЕТ БЫТЬ ПРИМЕНЕНО В ВОДЯНОМ НАСОСЕ С КОРПУСОМ, ИЗМЕНЕННЫМ ПОД УПЛОТНЕНИЕ «КАСО».

На рисунках 143 - 146 приводятся эскизы для изготовления деталей приспособления по сборке водяного насоса при установке уплотнения «КАСО» (см. рисунок 142). Материал деталей – сталь.

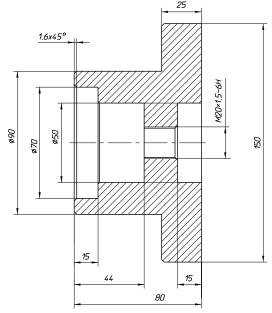


Рис. 143. Проставка

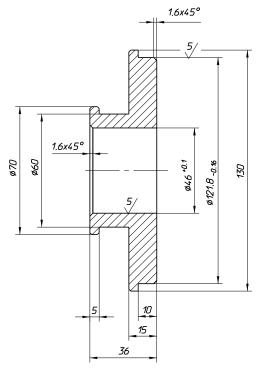


Рис. 144. Кондуктор

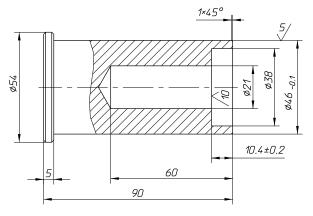
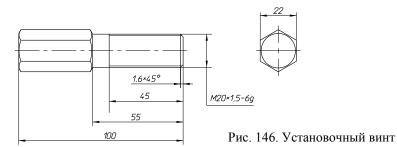



Рис. 145. Оправка

ТЕРМОСТАТ С ДРЕНАЖНЫМ КЛАПАНОМ

Для обеспечения более быстрого прогрева двигатели ЯМЗ с марта 2007 года комплектуются термостатами с дренажным клапаном (рис. 147). Указанные термостаты имеют обозначение Т117-06 или ТС107-06М и выполнены из нержавеющей стали (вместо латуни на ранее применявшихся термостатах).

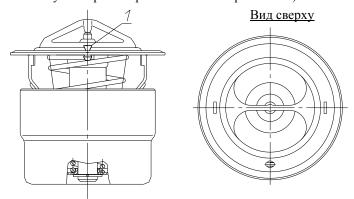


Рис. 147. Термостат с дренажным клапаном 1 – дренажный клапан

ВНИМАНИЕ! ДЛЯ ИСКЛЮЧЕНИЯ РАЗМОРАЖИВАНИЯ РАДИ-АТОРА ПРИ ЭКСПЛУАТАЦИИ В ЗИМНИХ УСЛОВИЯХ СИСТЕМА ОХЛАЖДЕНИЯ ДВИГАТЕЛЯ С ТЕРМОСТАТАМИ С ДРЕНАЖНЫМ КЛАПАНОМ ДОЛЖНА БЫТЬ ЗАПРАВЛЕНА ТОЛЬКО НИЗКОЗАМЕРЗАЮЩЕЙ ЖИДКОСТЬЮ (СМ. РАЗДЕЛ «ЭКСПЛУАТАЦИОННЫЕ МАТЕРИАЛЫ»).

ПРИ НЕВОЗМОЖНОСТИ ЭКСПЛУАТАЦИИ ДВИГАТЕЛЯ С НИЗКОЗАМЕРЗАЮЩЕЙ ЖИДКОСТЬЮ ПРИ МИНУСОВЫХ ТЕМ-ПЕРАТУРАХ РЕКОМЕНДУЕТСЯ ДЕМОНТИРОВАТЬ ДРЕНАЖНЫЙ КЛАПАН ПУТЕМ ПЕРЕКУСЫВАНИЯ ШЕЙКИ КЛАПАНА.

ВОДЯНОЙ НАСОС ПРОИЗВОДСТВА ОАО «ТМЗ» С ТОРЦОВЫМ УПЛОТНЕНИЕМ ФИРМЫ «КАСО»

С июня 2008 года двигатели ЯМЗ всех модификаций, комплектаций и исполнений, на которые устанавливался водяной насос 236-1307010-АЗ производства ОАО «Тутаевский моторный завод» (ТМЗ) комплектуются водяными насосами с торцовым уплотнением фирмы «КАСО» (Германия), конструкция которого приведена на рисунке 148.

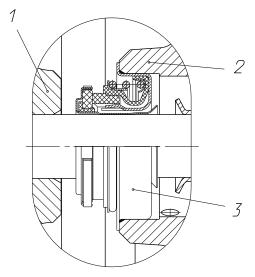


Рис. 148. Торцовое уплотнение фирмы «КАСО»

1 — крыльчатка водяного насоса 236-1307032-Г, 2 — корпус водяного насоса 236-1307015-Ж; 3 — уплотнение торцовое «КАСО» ААНИ 15,9x36,45/ 42x10,8 SIC-SIC

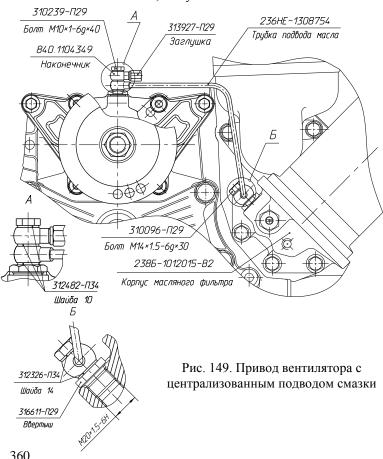
Водяной насос производства ОАО «ТМЗ» с торцовым уплотнением фирмы «КАСО» имеет маркировку на корпусе 236-1307010-А5.

Все комбайновые двигатели ЯМЗ, на которые устанавливался водяной насос 238АК-1307010 комплектуются новыми водяными насосами 238АК-1307010-А1 производства ОАО «ТМЗ» с торцовым уплотнением фирмы «КАСО» (Германия).

Взаимозаменяемость новых водяных насосов с насосами, на которых устанавливалось торцовое уплотнение прежней конструкции, сохранена.

Торцовое уплотнение «КАСО» выполнено в виде неразборного узла, устанавливаемого путем одновременной запрессовки на вал и в корпус насоса. Детали пары трения выполнены из материала на основе карбида кремния, обладающего высокой износостойкостью.

Торцовое уплотнение «КАСО» имеет обозначение ААНU 15,9x36,45/ 42x10,8 SIC-SIC – код 8.9014.


Порядок снятия и разборки водяных насосов производства ОАО «ТМЗ» с торцовым уплотнением «КАСО» аналогичен приведенному в разделе «Водяной насос с торцовым уплотнением фирмы «КАСО».

В запасные части для водяных насосов 236-1307010-А3 и 238АК-1307010 вместо комплекта деталей торцового уплотнения 236-1307029-А поставляется комплект 236-1307029-А1.

приложение и

ПРИВОД ВЕНТИЛЯТОРА С ЦЕНТРАЛИЗОВАННОЙ СМАЗКОЙ

С целью повышения работоспособности приводов вентилятора без муфты включения вентилятора двигатели ЯМЗ с апреля 2008 года комплектуются приводами вентилятора с централизованным подводом смазки (рис. 149). Комплектация двигателей приводами производится с установкой дополнительных деталей: трубки подвода масла, болтов крепления трубки 310096-П29 и 310239-П29, медных шайб 312326-П34 312482-П34, наконечника 840.1104349, заглушки 313927-П29.

Новая конструкция приводов отличается корпусом привода, распорной втулкой (рис. 150), наличием дополнительных деталей: ввертыша и шайбы.

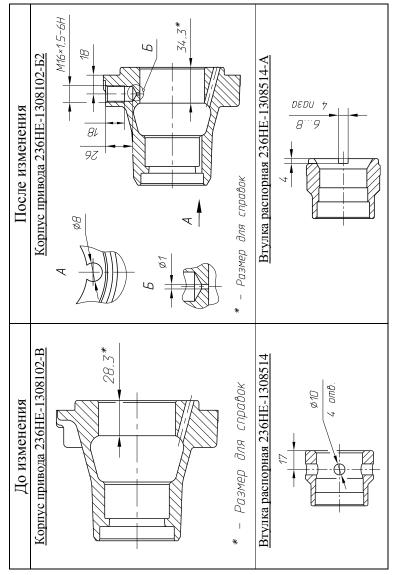


Рисунок 150. Корпус привода, втулка распорная до и после изменения

Для обеспечения взаимозаменяемости старого и нового привода предусмотрена поставка в запасные части комплекта, состоящего из привода и дополнительных деталей:

_	корпус фильтра с клапаном в сборе 238Б-1012015-В2	1 шт.
_	кольцо уплотнительное 840.1012083-20	1 шт.
_	прокладка корпуса масляного фильтра 236-1012100	2 шт.
_	прокладка привода вентилятора 236-1308108-Б	1 шт.
_	трубка подвода масла 236НЕ-1308754	1 шт.
_	наконечник 840.1104349	1 шт.
_	заглушка 313927-П29	1 шт.
_	болт М14х1,5-6gх30	1 шт.
_	болт М10х1-6gх40	1 шт.
_	шайба 14	2 шт.
_	шайба 10	3 шт.

Ниже приводятся обозначения комплекта запасных частей (привод с дополнительными деталями), привода до и после изменения, применяемость на двигателях ЯМЗ.

Обозначение	Обозначение	Обозначение	Применяемость
комплекта	привода до	привода после	приводов на
запасных частей	изменения	изменения	двигателях ЯМЗ
236HE-1308004	236HE- 1308011-E3	236HE- 1308011-И	ЯМ3-236НЕ-32; ЯМ3-236НЕ2-36; ЯМ3-236Б-3
236НЕ-1308004-Б	236HE- 1308011-A3	236НЕ- 1308011-Д	ЯМЗ-236НЕ2-28, -37
236HE-1308004-B	236HE- 1308011-Б3	236HE- 1308011-К	ЯМЗ-236НЕ-18, -28, -33; ЯМЗ-236НЕ2-15, -28, -33
236НД-1308004	236HД- 1308011-A	236HД- 1308011-B	ЯМЗ-236НД

Комплекты запасных частей приводов входят в состав номенклатуры запасных частей ОАО «Автодизель» на соответствующие модели двигателей ЯМЗ.

С целью снижения нагруженности манжеты в приводе вентилятора с мая 2011 года устанавливается дроссель 1 в корпус приводов вентилятора с централизованной смазкой (рис. 150a).

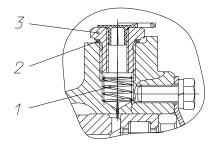


Рис. 150а. Дроссель в корпусе привода вентилятора:

- 1 дроссель 236НЕ-1308780;
- 2 шайба 312367-П:
- 3 ввертыш 316603-П29

ВНИМАНИЕ! ПЕРЕД РАЗБОРКОЙ ПРИВОДА ВЕНТИЛЯТОРА С ЦЕЛЬЮ ЗАМЕНЫ ПОДШИПНИКОВ ИЛИ МАНЖЕТЫ, НЕОБХОДИМО ДЕМОНТИРОВАТЬ ДРОССЕЛЬ ИЗ КОРПУСА ПРИВОДА.

приложение к СЦЕПЛЕНИЕ ЯМЗ-182-15

ВВЕДЕНИЕ

На Вашем транспортном средстве установлено современное диафрагменное сцепление вытягиваемого типа.

Руководство содержит сведения, необходимые для эксплуатации сцепления. Сведения по эксплуатации привода выключения сцепления приводятся в руководстве по эксплуатации транспортного средства.

ТРЕБОВАНИЯ БЕЗОПАСНОСТИ И ПРЕДУПРЕЖДЕНИЯ

- 1. Внимание! Для исключения возможности получения травмы при установке коробки передач запрещается работа руками в зоне между привалочными поверхностями картера маховика и картера сцепления.
- 2. При установке сцепления на маховик двигателя обеспечить затяжку болтов требуемым моментом. Затяжку болтов необходимо производить в несколько приёмов, при этом не допускать больших перекосов диафрагменной пружины.
- 3. При установке ведомого диска обратить внимание на положение пружинных пластин фрикционной накладки, они должны быть расположены со стороны длинной части ступицы.
- 4. Периодически контролировать величину хода муфты выключения сцепления. При нажатой до упора педали сцепления ход муфты не должен превышать 13 мм, а отход нажимного диска при этом должен быть не менее 2 мм.

Контроль величины хода муфты выполнять через открытые люки картера сцепления на неработающем двигателе. Регулировку осуществлять изменением хода педали сцепления, который рекомендуется устанавливать минимальным, но достаточным для полного выключения сцепления (без ведения).

Контроль величины отхода нажимного диска выполнять через нижний люк картера сцепления по перемещению четырех болтов с внутренним шестигранником.

5. Не допускать провисания коробки передач на ведомом диске сцепления при её установке на двигатель во избежание деформации ведомого диска.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА

	Модель сцепления
Основные параметры и характеристики	ЯМЗ-182-15
Тип сцепления	Сухое, фрикционное, одно- дисковое, с диафрагменной вытяжной пружиной, фрик- ционными накладками на безасбестовой основе
Установка сцепления	По стандартам ISO (SAE 1)
Крутящий момент двигателя, Н·м (кгс·м)	
- минимальный	820 (82)
- максимальный	1100 (110)
Диск ведомый сцепления	С демпфером пружиннофрикционного типа, с упругим креплением одной из фрикционных накладок
Размеры фрикционных накладок, мм	
- наружный диаметр	430
- внутренний диаметр	240
- толщина	4,3
Диаметр пояса нажимного диска Dн, мм	300
Толщина нажимной пружины Т, мм	5
Шлицы ступицы ведомого диска:	SAE-2"-10C
- число шлиц	10
- наружный диаметр, мм	50,95
- внутренний диаметр, мм	41,1
- ширина впадины, мм	7,9
Ход муфты, необходимый для выключения сцепления не более, мм	13
Отход нажимного диска при ходе муфты 13 мм, не менее, мм	2
Подшипник муфты выключения сцепления	Специальный, интегрального типа, шариковый радиальный, с постоянной смазкой производства ОАО «ВПЗ» г. Вологда

	Модель сцепления
Основные параметры и характеристики	ЯМЗ-182-15
Смазка опор вала вилки выключения сцепления	ШРУС-4М или ШРУС-4
Маркировка:	
- нажимного диска с кожухом в сборе	182-05
- ведомого диска	182-10
- диафрагменной пружины	182

УСТРОЙСТВО И РАБОТА СЦЕПЛЕНИЯ

Диафрагменное сцепление (рис. 151) состоит из ведущих и ведомых частей, а также механизма выключения.

Ведущая часть сцепления – нажимной диск с кожухом 2 устанавливается на маховик двигателя и крепится болтами M10x70 (12 шт.) на диаметре 450 мм. Центрирование осуществляется по цилиндрической проточке диаметром 475 мм на маховике и кожухе сцепления. Нажимной диск соединён с кожухом при помощи четырёх пакетов пластин, обеспечивающих центрирование, осевое перемещение и передачу крутящего момента от кожуха к нажимному диску. Нажимное усилие создаётся диафрагменной пружиной специальной конструкции, которая, будучи связанной с муфтой, осуществляет также выключение сцепления. Для центрирования диафрагменной пружины и исключения её проворачивания относительно кожуха и нажимного диска, на нажимном диске установлено шесть пар втулок со специальными оттяжными скобами. Применение этих скоб позволяет сохранять постоянный контакт нажимного диска с пружиной и обеспечивать отход нажимного диска выключении сцепления.

Ведомая часть – ведомый диск 1 с демпфером пружиннофрикционного типа, снижающим динамические нагрузки на трансмиссию. Крепление накладок осуществляется двумя типами латунных заклёпок (рис. 152).

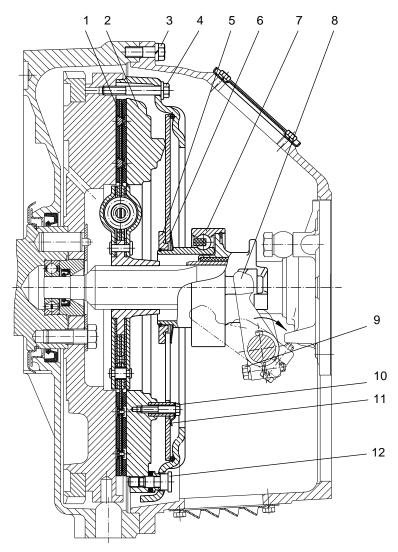


Рис. 151. Сцепление:

1 - диск ведомый; 2 - диск нажимной; 3 - болт M12x38; 4 - болт M10x70; 5 - кольцо упорное; 6 - пружинная шайба; 7 - муфта выключения сцепления; 8 - вилка выключения сцепления; 9 - болт M10x40; 10 - болт M8x40; 11 - скоба оттяжная; 12 - болт нажимного диска с внутренним шестигранником

Крепление фрикционной накладки, расположенной со стороны маховика, осуществляется 24 простыми заклепками 4 одновременно с креплением двенадцати пружинных пластин. Крепление другой накладки производится к пружинным пластинам 12 простыми и 12 ступенчатыми заклепками 2.

Подпружинивание одной из накладок позволяет снизить их износ в 2...3 раза.

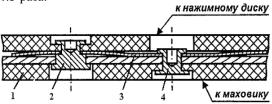


Рис. 152. Крепление накладок:

- 1 фрикционная накладка; 2 ступенчатая заклёпка;
- 3 пружинная пластина; 4 простая заклёпка

Механизм выключения сцепления состоит из муфты с подшипником 7 (см. рис. 151) и вилки 8 с валом, на шлицевой конец которого устанавливается рычаг. Муфта выключения сцепления соединяется с диафрагменной пружиной с помощью запорного устройства (рис. 153). При работе муфта центрируется по направляющей крышки заднего подшипника первичного вала коробки передач и удерживается от поворота боковыми поверхностями вилки. Выключение сцепления осуществляется поворотом вала по часовой стрелке (см. рис. 151).

ЭКСПЛУАТАЦИЯ СЦЕПЛЕНИЯ

Для увеличения долговечности и надёжности сцепления в период эксплуатации транспортного средства необходимо выполнять следующие требования:

- 1. Не допускать эксплуатацию с неисправным приводом управления сцеплением.
- 2. При трогании с места гружёного автомобиля, а также на плохой дороге или подъёме использовать только первую передачу.
- 3. Производить трогание при минимально возможной частоте вращения коленчатого вала двигателя, таким образом, чтобы темп включения сцепления позволял транспортному средству двигаться без «рывков» и «дёрганий».

- 4. При маневрировании не допускать регулирования скорости пробуксовкой сцепления (педаль сцепления частично нажата).
- 5. Не допускать многократных включений сцеплений («раскачивание» автомобиля при застревании) без интервалов, необходимых для его остывания.
- 6. Не допускать эксплуатацию сцепления, имеющего «ведение» (неполное выключение), которое характеризуется затруднённым включением синхронизированных передач, включением несинхронизированных передач со скрежетом, движением транспортного средства с выключенным сцеплением на низших передачах.
- 7. Не допускать эксплуатацию сцепления с «пробуксовкой» (неполное включение), приводящей к перегреву деталей сцепления, повышенному износу фрикционных накладок, появлению трещин на нажимном диске и маховике.
- 8. При установке сцепления применять специальные центрирующие оправки ведомого диска и муфты, позволяющие более качественно эксплуатировать сцепление.
- 9. Применять для смазки опор вала вилки ШРУС-4М или ШРУС-4.
- 10. Производить затяжку болтов только требуемым моментом (см. таблицу "Моменты затяжки болтов сцепления").

Проверку выключения сцепления осуществлять следующим образом:

- 1. Прогретый до рабочей температуры двигатель перевести на режим минимальных оборотов холостого хода; выключить спепление.
 - 2. Через 20 секунд медленно включить задний ход.
- 3. Если при этом раздаётся скрежет в коробке передач, необходимо проверить работу сцепления и привода его выключения

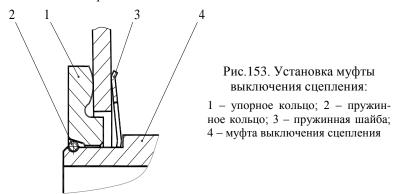
ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Техническое обслуживание сцепления включает ежедневную проверку работы сцепления и привода сцепления на транспортном средстве, а также техническое обслуживание и проверку состояния деталей и сборочных единиц после демонтажа коробки передач и снятия сцепления с маховика двигателя.

При ежедневной проверке на транспортном средстве убедитесь в отсутствии «ведения», «пробуксовки», посторонних шумов и стуков.

Периодически должен производиться контроль величины хода муфты выключения сцепления (см. п. 4 «Требования безопасности и предупреждения»).

После снятия коробки передач (без снятия сцепления с маховика):


- 1. Визуально проконтролировать зону в районе двадцати четырёх овальных отверстий диафрагменной пружины на отсутствие трещин. Треснувшая пружина подлежит замене. При установке новой пружины болты М8х40 и болты нажимного диска должны быть установлены на герметик УГ-6 ТУ6-01-1285-84, который наносится на 2...3 витка сухих и чистых болтов.
- 2. Обратить внимание на положение диафрагменной пружины. Если внутреннее отверстие пружины смещено в сторону маховика на 10...12мм от плоского состояния (конус в сторону двигателя), фрикционные накладки ведомого диска полностью изношены и подлежат замене.
- 3. Проверить лёгкость вращения подшипника муфты выключения сцепления.
- 4. Проконтролировать момент затяжки болтов крепления сцепления к маховику и при необходимости подтянуть.
- 5. Проверить шлицы первичного вала коробки передач в зоне контакта со ступицей ведомого диска и направляющую крышки подшипника первичного вала. При наличии забоин удалите их мелкой наждачной бумагой. Смажьте шлицы тонким слоем смазки ШРУС-4М или ШРУС-4.
- 6. Проконтролировать момент затяжки болтов M10х40 вилки выключения спепления.

После снятия сцепления с маховика:

- 1. Проверить состояние фрикционных накладок ведомого диска. При замене фрикционных накладок следует обратить внимание на состояние пружинных пластин ведомого диска. Если высота волнистых поверхностей пластин менее 0,5 мм, пластины должны быть заменены. Установка фрикционных накладок без пружинных пластин не допускается.
- 2. Проверить состояние поверхностей трения нажимного диска и маховика. При необходимости допускается проточка всей плоскости маховика (до центровочного бурта) на глубину не более 1,5 мм и поверхности трения нажимного диска не более 0,5 мм. Выпуклость поверхностей трения не допускается.

УСТАНОВКА СЦЕПЛЕНИЯ И КОРОБКИ ПЕРЕДАЧ НА ДВИГАТЕЛЬ

1. Установить муфту на нажимной комплект (корзину) в соответствии с рис. 153.

- 2. Вставить в передний подшипник первичного вала специальную оправку и установите на неё ведомый диск.
- 3. Установить нажимной комплект с муфтой в сборе на маховик, обеспечив совпадение крепёжных отверстий.
- 4. Завернуть болты крепления сцепления М10х70 вручную на 3...4 оборота, а затем затянуть их в несколько приёмов, равномерно подтягивая нажимной комплект к маховику, не допуская значительных перекосов диафрагменной пружины.
- 5. С помощью специальной оправки, установленной на центрирующую оправку ведомого диска, сцентрировать муфту выключения сцепления 1 и развернуть её, как показано на рис. 154 (положение выступа А). Допускается угловое отклонение установки выступа А не более 10°.
 - 6. Удалить центрирующие оправки.
- 7. Установить вилку выключения сцепления в положение, соответствующее приблизительно ее рабочему положению, и повернуть ее против часовой стрелки до упора с помощью рычага, надетого на шлицевой конец вала вилки. Зафиксировать рычаг в этом положении.
- 8. Включить передачу в коробке передач, снять крышку верхнего люка.

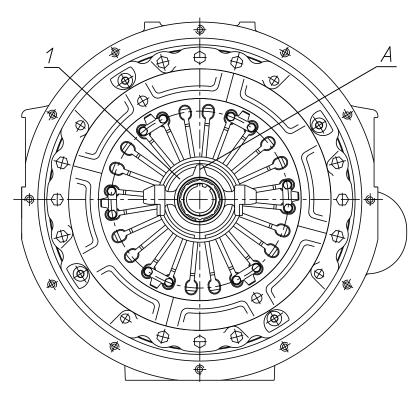


Рис. 154. Положение муфты выключения сцепления на нажимном комплекте

1 – муфта выключения сцепления;А – положение выступа муфты выключения сцепления

- 9. Вывесить коробку передач в горизонтальное положение и соблюдая соосность первичного вала коробки передач и коленчатого вала двигателя, аккуратно завести первичный вал в шлицы ведомого диска, направляющую крышки заднего подшипника первичного вала в отверстие муфты выключения сцепления.
- 10. При затруднении заведения в шлицы ступицы ведомого диска вращать первичный вал за выходной фланец коробки передач.
- 11. Закрепить коробку передач, выключить передачу. Освободить рычаг и повернуть его по часовой стрелке, установить вилку выключения сцепления в рабочее положение. 372.

- 12. Соединить рычаг с приводом выключения сцепления. При применении пневмомеханического или пневмогидравлического привода, не имеющего компенсации износа фрикционных накладок, обеспечить зазор между вилкой и упорными поверхностями муфты 3,6±04 мм (обеспечивается регулировкой привода).
- 13. Отрегулировать ход муфты выключения сцепления регулировкой хода педали и, вращая вручную коленчатый вал двигателя и выключая сцепление, убедиться по перемещению всех четырёх болтов нажимного диска, что нажимной диск отходит равномерно и на необходимую величину.
- 14. Включить прямую передачу в коробке передач, выключить сцепление и, вращая выходной фланец, убедиться, что сцепление выключается чисто (без «ведения»).
- 15. Окончательную проверку работы сцепления проводить на работающем двигателе. При выключении сцепления выходной фланец коробки передач не должен вращаться на любой передаче при любом числе оборотов двигателя.

МОМЕНТЫ ЗАТЯЖКИ БОЛТОВ СЦЕПЛЕНИЯ

Болт	Момент затяжки, Н·м (кгс·м)
M8x40	10,78 (1,1)15,69 (1,6)
M10x70	39,22 (4,0)49,03 (5,0)
M10x40	27,45 (2,8)35,3 (3,6)
M12x38	98,6 (10)107,87 (11)
Болт нажимного диска	68,64 (7)98,06 (10)

ОСОБЕННОСТИ УСТАНОВКИ МУФТЫ ВЫКЛЮЧЕНИЯ СЦЕПЛЕНИЯ

Установка муфты выключения сцепления со специальным шариковым радиальным подшипником с постоянной смазкой и пластмассовым сепаратором (далее по тексту – интегральная муфта) на диафрагменную пружину нажимного комплекта («корзины») производится в соответствии с рисунком 155.

Для установки кольца 1 нажимной комплект 3 переместить в сторону зафиксированной интегральной муфты 5 или, наоборот, интегральную муфту в сторону зафиксированного нажимного комплекта усилием 500...800 Н (50...80 кгс), сжимая пружинную шайбу 4, затем установить кольцо 1 в канавку внутреннего кольца подшипника интегральной муфты и снять усилие.

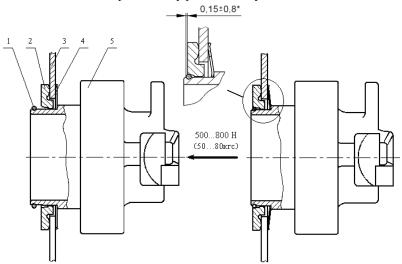


Рис. 155. Установка интегральной муфты на диафрагменную пружину на нажимной комплект:

После установки сцепления на двигатель обеспечить соосность центрального отверстия интегральной муфты $(\emptyset60,55\pm0,15)$ и шлицевого отверстия ступицы ведомого диска.

¹ — пружинное кольцо; 2 — упорное кольцо; 3 — диафрагменная пружина; 4 — пружинная шайба; 5 — муфта.

^{* –} размер, обеспечивающий работоспособность соединения.

Перед установкой коробки передач на двигатель интегральную муфту развернуть как показано на рисунке 154, обращая особое внимание на положение выступа A. Допускается угловая погрешность установки выступа $A \pm 10^{\circ}$.

На направляющую поверхность крышки первичного вала нанести тонкий слой смазки ШРУС-4 или ШРУС-4М.

Вилку выключения сцепления повернуть против часовой стрелки (от коробки передач) до упора ее в два выступа крышки первичного вала.

Коробку передач устанавливать, вывесив её в горизонтальное положение и предварительно включив прямую передачу. При стыковке совпадение шлиц первичного вала коробки передач и ведомого диска сцепления обеспечить поворотом выходного вала коробки передач.

После установки коробки передач поворотом вала вилки по часовой стрелке установить вилку выключения и интегральную муфту в рабочее положение.

Разборка производится в обратной последовательности.

ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ

Неисправность	Способ устранения	
ПРОБУКСОВКА		
Износ фрикционных накладок ведомого диска	Заменить накладки или ведомый диск в сборе	
Попадание масла на поверхности трения сцепления через уплотнения двигателя или коробки передач	Удалить масло с поверхностей трения, устранить течь масла	
Поломка нажимной пружины	Заменить нажимную пружину или нажимной диск с кожухом и пружиной в сборе	
Сцепление частично выключено из - за неисправности привода выключения	Устранить неисправность привода выключения сцепления в соответствии с руководством по эксплуатации транспортного средства.	

Неисправность	Способ устранения		
«ВЕДЕНИЕ»			
Привод выключения сцепления не обеспечивает необходимого хода муфты выключения	Проверить работу привода выключения сцепления и устранить неисправности		
Недостаточный отход нажимного диска	Обеспечить контакт оттяжных скоб с диафрагменной пружиной, устранить налет грязи между нажимным диском и кожухом, разобрать сцепление		
Коробление нажимного диска	Заменить нажимной диск с кожухом в сборе		
Использование ведомого диска после ремонта с недопустимым биением и кривизной	Заменить ведомый диск или исправить методом безударной рихтовки		
Разрушение накладки ведомого диска	Заменить накладки или ведомый диск		
Заедание ведомого диска на шлицах первичного вала	Зачистить шлицы первичного вала или заменить первичный вал		
ВЫДЕЛЯЮЩИЙСЯ ШУМ В МЕСТЕ РАСПОЛОЖЕНИЯ СЦЕПЛЕНИЯ			

Заменить муфту выключения

Отсутствие смазки в подшипнике муфты выключения или его износ

сцепления с подшипником

СИЛОВЫЕ АГРЕГАТЫ ЯМЗ-236БЕ2-14 И **ЯМЗ-236НЕ2-20**

Силовые агрегаты ЯМЗ-236БЕ2-14 в комплектности с двигателем ЯМЗ-236БЕ2-14, сцеплением ЯМЗ-182-35 и коробкой передач ЯМЗ-336-24 и ЯМЗ-236НЕ2-20 в комплектности с двигателем ЯМЗ-236НЕ2-20, сцеплением ЯМЗ-182-35 и коробкой передач ЯМЗ-2361-58 предназначены для установки соответственно на автомобили «Урал 4320-43» и Урал-43206-41» многоцелевого назначения производства ОАО «АЗ Урал».

Применение силовых агрегатов на других моделях изделий обязательно должно быть согласовано изготовителем изделий с OAO «Автодизель».

Двигатели ЯМЗ-236БЕ2-14 и ЯМЗ-236НЕ2-20 — шестицилиндровые, четырехтактные с газотурбинным наддувом, комплектуются V-образной топливной аппаратурой соответственно моделей 324.5-10.01 и 324.5-20; фрикционной муфтой автоматического и ручного включения вентилятора; генератором переменного тока модели 4002.3771В-80 (80A) номинальным напряжением 28В, с ременным приводом поликлиновым ремнем, передаточным числом привода генератора - 3,67; герметичным стартером 2562.3708-40, который по конструкции идентичен серийному стартеру 25.3708-21.

Двигатели ЯМЗ-236БЕ2-14 и ЯМЗ-236НЕ2-20 соответствуют экологическим нормативам правил ЕЭК ООН №№96-01, 24-03 (Экологический класс 3).

Силовые агрегаты выпускаются в герметичном исполнении, что позволяет автомобилю преодолевать брод глубиной до 1,75 м, в тоже время, после преодоления водных преград необходимо проверить масло на наличие воды в двигателе и коробке передач и в случае обнаружения масло заменить.

Необходимо также вывернуть пробку, находящуюся внизу картера сцепления и при наличии слить воду, завернуть пробку и продолжить движение. Герметичность силового агрегата достигается применением в качестве уплотняющего материала герметизированных составов, приведенных в настоящем руководстве по эксплуатации.

Конструктивно двигатели ЯМЗ-236БЕ2-14 и ЯМЗ-236НЕ2-20 выполнены аналогично двигателю ЯМЗ-236НЕ2-3, а по технической характеристике соответствуют двигателям соответственно ЯМЗ-236БЕ2 и ЯМЗ-236НЕ2.

ЭКСПЛУАТАЦИЯ И ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Эксплуатацию и техническое обслуживание силовых агрегатов ЯМЗ-236БЕ2-14 и ЯМЗ-236НЕ2-20 необходимо проводить в соответствии с указаниями и рекомендациями настоящего руководства по эксплуатации применительно двигателей соответственно ЯМЗ-236БЕ2 и ЯМЗ-236НЕ2 со следующими изменениями по периодичности ТО:

- ТО-1 проводится через 500 часов работы двигателя или 15000 км пробега автомобиля;
- ТО-2 через 1000 часов работы двигателя или 30000 км пробега автомобиля.

Операции ТО-1 и ТО-2 выполнять в соответствии с разделом «Техническое обслуживание» настоящего руководства по эксплуатации.

Двигатели ЯМЗ-236БЕ2-14 и ЯМЗ-236НЕ2-20 комплектуются V-образной топливной аппаратурой соответственно моделей 324.5-20 и 324.5-10.01, которые по конструкции, регулировочным параметрам и техническому обслуживанию выполнены по аналогии с топливным насосом модели 324.5, приведенным в приложении 7 настоящего руководства по эксплуатации.

Силовые агрегаты ЯМЗ-236БЕ2-14 и ЯМЗ-236НЕ2-20 комплектуются диафрагменным сцеплением модели ЯМЗ-182-35 в герметичном исполнении с интегральной муфтой выключения, не требующей пополнения смазки в процессе эксплуатации (см. далее раздел «Сцепление диафрагменное модели ЯМЗ-182-35»).

Силовой агрегат ЯМЗ-236БЕ2-14 комплектуются коробкой передач ЯМЗ-336-24, описание и техническое обслуживание которой приводится далее (см. раздел «Коробка передач ЯМЗ-336-24»).

Силовой агрегат ЯМЗ-236НЕ2-20 комплектуется коробкой передач ЯМЗ-2361-58, описание и техническое обслуживание которой приводится в настоящем руководстве по эксплуатации (см. раздел «Коробки передач типа ЯМЗ-2361 и ЯМЗ-2381»).

ЭКСПЛУАТАЦИОННЫЕ МАТЕРИАЛЫ

Надежная работа двигателя гарантируется только при использовании рекомендуемых заводом сортов топлив, масел и охлаждающих жидкостей.

РЕКОМЕНДУЕМЫЕ МАРКИ ТОПЛИВ

Для эксплуатации двигателей ЯМЗ-236БЕ2-14 и ЯМЗ-236HE2-20 применять следующие дизельные топлива:

1. ОСНОВНОЕ ДИЗЕЛЬНОЕ ТОПЛИВО ПО ГОСТ 305-82

- марки **Л-0,5-40** при температуре окружающего воздуха 0°C и выше;
- марки **3-0,5 минус 35** при температуре окружающего воздуха минус 20°C и выше;
- марки **3-0,5 минус 45** при температуре окружающего воздуха минус 30°C и выше;
- марки **A-0,4** при температуре окружающего воздуха минус 50°С и выше.

2. ДУБЛИРУЮЩЕЕ ТОПЛИВО ДИЗЕЛЬНОЕ

- 2.1. Топливо дизельное Евро по ГОСТ Р 52368-2005 вида **I, II, III** (по содержанию серы).
- 2.2. Топливо дизельное по ТУ 38.401-58-45:
 - марки **ДАЭЧ** при температуре окружающего воздуха минус 50°C и выше.
- 2.3. Топливо дизельное по ГОСТ 305-82:
 - марок Л-0,2-40, Л-0,2-62 при температуре окружающего воздуха 0°С и выше;
 - марки 3-0,2 минус 35 при температуре окружающего воздуха минус 20°С и выше;
 - марки **3-0,2 минус 45** при температуре окружающего воздуха минус 30°С и выше;
 - марки **A-0,2** при температуре окружающего воздуха минус 50°C и выше.

3. РЕЗЕРВНОЕ ТОПЛИВО ДИЗЕЛЬНОЕ ПО ГОСТ 305-82

 марки Л-0,5-62 при температуре окружающего воздуха 0°С и выше.

4. ЗАРУБЕЖНОЕ ТОПЛИВО ДИЗЕЛЬНОЕ

Для двигателей ЯМЗ, эксплуатирующихся за рубежом, допускается применение дизельных топлив по стандарту EN-590 вида I, II, III (по содержанию серы).

Внимание! Дизельные топлива, соответствующие ГОСТ Р 52368-2005 и стандарту EN-590, применять в зависимости от климатических условий:

- для районов с умеренным климатом сортов A, B, C, D, E, F с предельной температурой фильтруемости плюс 5; 0; минус 5; минус 10; минус 15; минус 20°C соответственно;
- для районов с холодным климатом классов 0; 1; 2; 3; 4 с предельной температурой фильтруемости минус 20; минус 26; минус 32; минус 38; минус 44°C соответственно.

РЕКОМЕНДУЕМЫЕ МАРКИ МОТОРНЫХ МАСЕЛ

Для эксплуатации двигателей ЯМЗ-236БЕ2-14 и ЯМЗ-236НЕ2-20 применять следующие моторные масла:

1. ОСНОВНОЕ МОТОРНОЕ МАСЛО

(Периодичность смены – 1000 часов)

марки М-53/16-Д₂ по ТУ 38.401-58-309-2002 при температурах окружающего воздуха минус 20°С и выше - без предпускового подогрева, ниже минус 20°С - с предпусковым подогревом.

2. ДУБЛИРУЮЩЕЕ МОТОРНОЕ МАСЛО

(Периодичность смены – 500 часов)

- марки **М-10-**Д₂(**м**) по ГОСТ 8581-78 при температурах окружающего воздуха выше плюс 5°С;
- марки М-8-Д₂(м) по ГОСТ 8581-78 при температурах окружающего воздуха ниже плюс 10°С (до минус 15°С без предпускового подогрева, ниже минус 15°С с предпусковым подогревом);
- марки **М-43/14-**Д по ТУ 0253-006-08151164-02 при температурах окружающего воздуха минус 25°С и выше без предпускового подогрева, ниже минус 25°С с предпусковым подогревом

3. ЗАРУБЕЖНОЕ МОТОРНОЕ МАСЛО

Для двигателей, эксплуатирующихся за рубежом, допускается применение импортных моторных масел:

- в качестве основных с уровнем эксплуатационных свойств по API не ниже CG-4 класса вязкости SAE 15W-40;
- в качестве дублирующих с уровнем эксплуатационных свойств по API не ниже CF-4 классов вязкости SAE 10W-40, SAE 20W, SAE 30.

РЕКОМЕНДУЕМЫЕ МАРКИ ТРАНСМИССИОННЫХ МАСЕЛ

Для эксплуатации коробок передач на силовых агрегатах ЯМЗ-236БЕ2-14 и ЯМЗ-236НЕ2-20 применять следующие трансмиссионные масла:

1. ОСНОВНОЕ ТРАНСМИССИОННОЕ МАСЛО

- марки ТСп-15к по ГОСТ 23652 при температуре окружающего воздуха до минус 30°С.
- Смесь 85% TCп-15к + 15% дизельного топлива марок:
 - **3-0,5 минус 4**5 или **A-0,4** по ГОСТ 305-82 при температуре окружающего воздуха ниже минус 30°С;
 - дизельное топливо Евро по ГОСТ Р 52368-2005 (ЕН 590:2004) классов 3; 4 вида I; II.

2. ДУБЛИРУЮЩЕЕ ТРАНСМИССИОННОЕ МАСЛО

- марки ТАД-17и по ГОСТ 23652 при температуре окружающего воздуха до минус 30°С.
- марки ТМ-5-12РК по ТУ 38.101844 всесезонно.
- Смесь 85% ТСп-15к + 15% дизельного топлива марок:
 - **ДАЭЧ** по ТУ 38.401-58-45 при температуре окружающего воздуха ниже минус 30°C;
 - **3-0,2 минус 45** или **A-0,2** по ГОСТ 305 при температуре окружающего воздуха ниже минус 30°С.

3. ЗАРУБЕЖНОЕ ТРАНСМИССИОННОЕ МАСЛО

Для коробок передач, эксплуатирующихся за рубежом, допускается применение импортных трансмиссионных масел с уровнем эксплуатационных свойств GL-3, GL-4, GL-5 по классификации API классов вязкости SAE J306: SAE 75W-90, SAE 80W-90 при температурах воздуха выше минус 40 и минус 25°C соответственно.

Смену масла в коробке передач проводить в зависимости от условий эксплуатации по следующей схеме:

- автомобили с годовым пробегом 80 тыс. км и более через 45 тыс. км;
- автомобили с годовым пробегом менее 80 тыс. км и при тяжелых условиях эксплуатации (грунтовые дороги, гористая местность или жаркий, сухой климатический район и т.п.) – через 30 тыс. км.

РЕКОМЕНДУЕМЫЕ ОХЛАЖДАЮЩИЕ ЖИДКОСТИ

Для эксплуатации двигателей ЯМЗ-236БЕ2-14 и ЯМЗ-236НЕ2-20 применять следующие охлаждающие жидкости:

1. ОСНОВНАЯ ОХЛАЖДАЮЩАЯ ЖИДКОСТЬ

- марок ОЖ-40 "Лена", ОЖ-65 "Лена" по ТУ 113-07-02-88.

2. ДУБЛИРУЮЩАЯ ОХЛАЖДАЮЩАЯ ЖИДКОСТЬ

- марок Тосол А 40М, Тосол А 65М по ТУ 6-57-95-96;
 ТУ 2422-002-26759308-95;
- марок ОЖ-40, ОЖ-65 по ГОСТ 28084-89, ГОСТ 159-52.

3. ЗАРУБЕЖНАЯ ОХЛАЖДАЮЩАЯ ЖИДКОСТЬ

Для двигателей, эксплуатирующихся за рубежом, применять охлаждающие жидкости М1-Е-559 (США) или ВS 3150, сорт AL-3 (Англия).

Смену охлаждающей жидкости проводить через один год после начала эксплуатации; далее менять жидкость через 2,5 года эксплуатации.

СЦЕПЛЕНИЕ ДИАФРАГМЕННОЕ МОДЕЛИ ЯМЗ-182-35

Диафрагменное сцепление модели ЯМЗ-182-35, в отличие от сцепления модели ЯМЗ-182-15, выполняется в герметичном исполнении за счет установки на картере сцепления крышек 15 с прокладками 14 (см. рис. 156). На верхней крышке картера сцепления устанавливается сапун 13, на нижней — пробка. В остальном сцепление модели ЯМЗ-182-35 по конструкции идентично сцеплению ЯМЗ-182-15, описание конструкции и техническое обслуживание которого приводится в приложении 10 настоящего руководства по эксплуатации.

Сведения по эксплуатации привода выключения сцепления приводятся в руководстве по эксплуатации транспортного средства.

При техническом обслуживании сцепления ЯМЗ-182-35 применять для смазки опор вала вилки выключения сцепления Литол – 24; проверять шлицы первичного вала коробки передач в зоне контакта со ступицей ведомого диска и направляющую крышки подшипника первичного вала. При наличии забоин удалять их мелкой наждачной бумагой. Смазывать шлицы тонким слоем смазки Литол - 24.

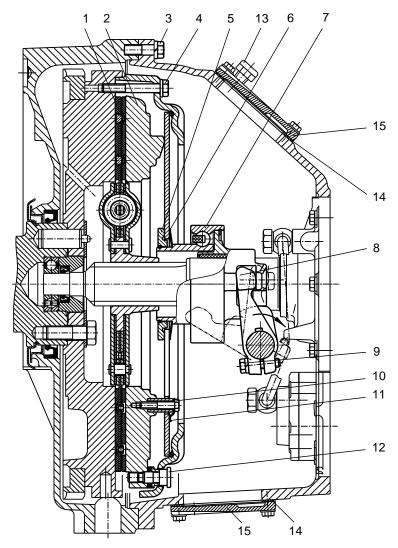


Рис. 156. Сцепление ЯМЗ-182-35:

- диск ведомый; 2 - диск нажимной; 3 - болт M12x38; 4 - болт M10x70; 5 - кольцо упорное; 6 - пружинная шайба; 7 - муфта выключения сцепления; 8 - вилка выключения сцепления; 9 - болт M10x40; 10 - болт M8x40; 11 - скоба оттяжная; 12 - болт нажимного диска с внутренним шестигранником; 13 - сапун; 14 - прокладка; 15 - крышка

КОРОБКА ПЕРЕДАЧ ЯМЗ-336-24

Данная комплектация коробки передач выполнена в герметичном исполнении с установкой рычага переключения непосредственно на верхней крышке коробки.

ПРЕДУПРЕЖДЕНИЯ

Исправная работа коробки передач и срок ее службы находится в прямой зависимости от культуры эксплуатации, поэтому нужно внимательно отнестись к проведению всех регламентных работ, предусмотренных данным руководством.

Применение смазочных материалов, не указанных в настоящей инструкции, не разрешается.

Передачу заднего хода в коробке передач включать только после полной остановки автомобиля.

«Трогание» груженого автомобиля с места производится на первой передаче, «трогание» на второй передаче допускается только на дорогах с твердым покрытием при частичной загрузке автомобиля.

Для предупреждения преждевременного износа трущихся пар рекомендуется перед пуском двигателя при температуре окружающей среды ниже минус 30°С подогреть коробку передач.

ХАРАКТЕРИСТИКИ КОРОБКИ ПЕРЕДАЧ

	Основные параметры	Модель коробки передач ЯМЗ-336-24
Т	ип коробки передач	Механическая, шестиступенчатая с шестернями постоянного зацепления, с синхронизаторами на всех передачах, кроме передачи заднего хода
Передаточчные числа	Передача	6,39 3,65 2,23 1,42 1,00 0.75 6,00

Основные	Модель коробки передач	
параметры	ЯМЗ-336-24	
Механизм переклю- чения передач	Четырехходовой с тремя подвижными штоками и одной подвижной вилкой	
Механизм управления передач	Рычагом, установленным непосредственно на верхней крышке коробки передач (см. рис. 157)	
	Не более 73,5 кВт (100 л.с.) от заднего шлицевого торца промежуточного вала	
Отбор мощности	Возможен отбор мощностей с правой стороны коробки передач через люк от зубчатого венца косозубой шестерни шестой передачи промежуточного вала не более 44 кВт (60 л.с.)	
Заправочная емкость системы	9+0,5	
смазки, л	(при первичной заправке)	

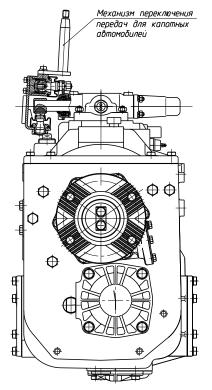


Рис. 157. Механизм управления переключения передач

Схема перемещения рычага механизма управления переключением передач показана на рис. 158.

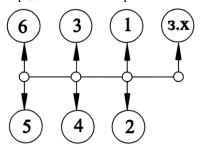


Рис. 158. Схема переключения передач КП.

ВНИМАНИЕ! НЕ ДОПУСКАЕТСЯ ВКЛЮЧЕНИЕ ЗАДНЕГО ХОДА И ПЕРВОЙ ПЕРЕДАЧИ ПРИ ДВИЖУЩЕМСЯ АВТОМОБИЛЕ.

Задний ход и первую передачу включать лишь при частоте вращения коленчатого вала, соответствующей минимальным оборотам холостого хода двигателя с задержкой не менее 10 секунд после выжима педали сцепления.

Включение без задержки приводит к скрежету и повреждению зубьев муфты включения и шестерён.

Если при соблюдении этих правил включения заднего хода и первой передачи происходит со скрежетом, это свидетельствует о необходимости проверки работы систем сцепления (см. подраздел «Эксплуатация сцепления»).

ПРАВИЛА БУКСИРОВКИ АВТОМОБИЛЯ

При буксировке автомобиля с неработающим двигателем первичный и промежуточный валы коробки передач не вращаются, масляный насос в этом случае не работает и не подает смазку в подшипники шестерен вторичного вала и в подшипники опор валов, а также на конусные поверхности синхронизаторов, что вызовет задиры поверхностей скольжения, износ поверхностей колец синхронизаторов и ведет к выходу из строя всей коробки передач.

Для проведения буксировки выключить сцепление и включить прямую (пятую) передачу в коробке передач или отсоединить коробку от трансмиссии. Буксировка автомобиля без отсоединения карданного вала или выжима сцепления с включенной прямой передачей не допускается.

МАСЛА И СМАЗКИ

Для смазки коробки передач следует применять рекомендованные трансмиссионные масла (см. раздел «Эксплуатационные материалы»).

Для смазки деталей механизма выключения сцепления следует применять смазку Литол - 24.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Виды и периодичность технического обслуживания коробки передач соответствуют видам и периодичности технического обслуживания двигателя.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ ПОСЛЕ ОБКАТКИ АВТОМОБИЛЯ

После обкатки автомобиля заменить масло в картере коробки передач, очистить от продуктов приработки сетку маслозаборника и магнит.

ПЕРВОЕ ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ (ТО-1)

Проверить уровень масла в картере и при необходимости долить.

ВТОРОЕ ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ (ТО-2)

- 1 Выполнить все операции первого технического обслуживания.
- 2 Проверить и при необходимости отрегулировать заднюю опору коробки передач в соответствии с руководством по эксплуатации автомобиля (если опора предусмотрена конструкцией автомобиля).

ДОПОЛНИТЕЛЬНО ЧЕРЕЗ ОДНО ТО-2

 Сменить масло в коробке передач с промывкой картера, сетки и магнита.

При отсутствии системы регламентированного технического обслуживания автомобилей смену масла производить в зависимости от условий эксплуатации по следующей схеме:

• автомобили с годовым пробегом 80 тыс. км и более - через 45 тыс. км;

• автомобили с годовым пробегом менее 80 тыс. км и при тяжелых условиях эксплуатации (грунтовые дороги, гористая местность или жаркий, сухой климатический район и т.п.) - через 30 тыс. км.

Масло из коробки передач сливать сразу после работы в горячем состоянии. Коробку передач промывать индустриальным маслом И-12A или И-20A по ГОСТ 20799-88, для чего:

- 2,5-3 л его залить в картер коробки;
- установить рычаг переключения передач в нейтральное положение, пустить двигатель на 7-8 минут, после чего остановить его, слить промывочное масло и залить свежее.

Категорически запрещается промывать коробку передач керосином или дизельным топливом во избежание отказа в работе масляного насоса из-за недостаточного разрежения на всасывании и как следствие, выхода из строя коробки передач. В случае полной переборки коробки передач масляный насос перед установкой смазать применяемым в коробке передач маслом.

4 Каждый раз при отсоединении коробки передач от двигателя передний подшипник первичного вала, установленный в маховике, набить смазкой Литол - 24 ГОСТ 21150. При этом проверить осевой люфт валов коробки передач, который должен быть не более 0,1 мм. Если люфты окажутся более указанных величин, то их необходимо отрегулировать согласно приведенным ниже указаниям или заменить подшипники.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТ ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ

При техническом обслуживании проверять крепление коробки передач к двигателю и состояние ее подвески, поддерживать нормальный уровень масла в коробке и своевременно заменять его.

Уровень масла в картере коробки должен быть не ниже нижней кромки контрольного отверстия 3 (рис. 159). Масло из картера коробки передач сливать в горячем состоянии через сливное отверстие, закрытое пробкой 4. После слива масла очистить магнит сливной пробки, отвернуть болты, снять крышку 2 заборника масляного насоса, очистить и промыть сетку, после чего крышку установить на место. При установке крышки заборника обратить внимание на то, чтобы не перекрыть масляную магистраль крышкой или ее прокладкой.

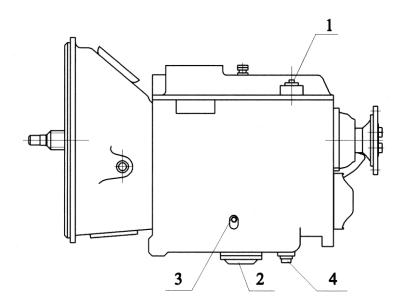


Рис. 159. Пробки коробки передач ЯМЗ-336-24:

- 1 маслозаливное отверстие; 2 крышка заборника масляного насоса;
- 3 контрольное отверстие уровня масла; 4 сливное отверстие

Коробку передач промывать индустриальным маслом И-12A или И-20A по ГОСТ 20799-88, для чего:

- 1 2,5-3 л его залить в картер коробки;
- 2 установить рычаг переключения передач в нейтральное положение, пустить двигатель на 7-8 минут, после чего остановить его, слить промывочное масло и залить свежее.

Категорически запрещается промывать коробку передач керосином или дизельным топливом во избежание отказа в работе масляного насоса из-за недостаточного разрежения на всасывании и как следствие, выхода из строя коробки передач. В случае полной переборки коробки передач масляный насос перед установкой смазать применяемым в коробке передач маслом.

Для плавного и легкого переключения передач и предохранения зубьев зубчатых колец и муфт синхронизаторов от торцевого износа правильно регулировать сцепление и не допускать его «ведение».

ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ КОРОБКИ ПЕРЕДАЧ И СПОСОБЫ ИХ УСТРАНЕНИЯ

Неисправность

Способ устранения

ЗАТРУЛНЕННОЕ ВКЛЮЧЕНИЕ ПЕРЕЛАЧ ВКЛЮЧЕНИЕ ЗАДНЕГО ХОДА СО СКРЕЖЕТОМ

Неполное выключение сцепле- См. раздел «Неисправности ния («пробуксовка» или сцепление «ведет»*)

сцепления»

ЗАТРУЛНЕННОЕ ВКЛЮЧЕНИЕ ПЕРЕЛАЧ. ВКЛЮЧЕНИЕ ИХ С УДАРОМ И СКРЕЖЕТОМ. ЗАДНИЙ ХОД ВКЛЮЧАЕТСЯ НОРМАЛЬНО

Износ конусных колец синхронизаторов

Заменить синхронизатор

НЕ ВКЛЮЧАЮТСЯ ПЕРЕЛАЧИ

Износ деталей и регулировка дистанционного привода управпения

Отрегулировать привод заменить изношенные детали, устранить ослабление креплений

САМОВЫКЛЮЧЕНИЕ ПЕРЕДАЧ

Неполное включение передачи из-за разрегулировки дистанционного привода управления

Подтянуть крепления, заменить изношенные детали, отрегулировать привод vправления

Износ зубчатых колец и муфт синхронизаторов, поломка фиксаторных колец

Заменить изношенные детали

ПОВЫШЕННЫЙ ШУМ ПРИ РАБОТЕ КОРОБКИ ПЕРЕДАЧ

Оспабление затяжки болтов крепления картера сцепления к картеру маховика Износ зубьев шестерен

Подтянуть болты

Износ подшипников валов или

Заменить шестерни Заменить подшипники

Повышенный осевой люфт валов

Отрегулировать осевой люфт регулировочными валов прокладками

шестерен

Неисправность	Способ устранения		
ТЕЧЬ МАСЛА ИЗ КОРОБКИ ПЕРЕДАЧ			
Износ или потеря эластичности	Заменить сальники		
сальников			
Повышенное давление в	Промыть сапун		
картере коробке передач			
Нарушение герметичности по	Подтянуть крепежные		
уплотняющим поверхностям	детали		
ПОВЫШЕННЫЙ НАГРЕВ КОРОБКИ ПЕРЕДАЧ**			
Неисправный масляный насос	Отрегулировать насос или		
	заменить исправным		

Примечания:

* «Пробуксовка» сцепления выявляется, как правило, при максимальных нагрузках двигателя, когда скорость автомобиля не повышается в соответствии с повышением числа оборотов двигателя. Причиной пробуксовки включенного сцепления могут быть: отсутствие свободного хода муфты включения сцепления (сцепление частично выключено, независимо от водителя), фрикционные накладки ведомых дисков имеют предельный износ, на поверхность трения сцепления попало масло, недостаточное усилие нажимных пружин, ненормальная работа привода выключения сцепления транспортного средства.

«Ведение» сцепления проявляется в моменты переключения передач, когда затруднено выключение или включение передач, особенно включение несинхронизированных передач. В этих случаях при полностью выжатой педали выключения сцепления на первичный вал коробки передач частично передается крутящий момент двигателя. Причинами «ведения» сцепления ведения могут быть: недостаточный рабочий ход муфты выключения сцепления (свободный ход при этом увеличен), коробление дисков, ненормальная работа механизма регулировки отхода среднего ведущего диска.

** Прежде, чем искать причину неисправности, убедиться в наличии достаточного количества масла в картере.

МОМЕНТЫ ЗАТЯЖКИ РЕЗЬБОВЫХ СОЕДИНЕНИЙ

Резьбовое соединение	Момент затяжки Н·м (кгс·м)
Болты крепления картера сцепления	
к картеру коробки передач М16	215,8 - 245,2 (22 - 25)
Болты крепления картера сцепления	
к картеру маховика М12	98 - 108 (10 - 11)
Болты крепления фланца выходного	
вала М12	43 - 60,5 (4,4 - 6,2)
Болты крепления верхней крышки	
картера коробки М10	49 –54 (5 – 5,5)
Болты крепления крышки	
первичного вала М10	49 –54 (5 – 5,5)
Болты крепления корпуса масляного	
насоса М10	49 - 54 (5 - 5,5)

ГАРАНТИИ ЗАВОДА И ПОРЯДОК ПРЕДЪЯВЛЕНИЯ РЕКЛАМАЦИЙ ПО СИЛОВЫМ АГРЕГАТАМ ЯМЗ-236БЕ2-14 И ЯМЗ-236НЕ2-20

ОАО «Автодизель» гарантирует исправную работу силовых агрегатов ЯМЗ-236БЕ2-14 и ЯМЗ-236НЕ2-20 при соблюдении потребителем требований настоящего руководства по эксплуатации и приложения 11.

Гарантийный срок эксплуатации и наработка силовых агрегатов ЯМЗ-236БЕ2-14 и ЯМЗ-236НЕ2-20 равны гарантийному сроку и наработке изделий, на которые они установлены.

Остальные положения по гарантийным обязательствам и порядок предъявления рекламаций устанавливаются соответствии разделом «Гарантии завода c рекламаций», изложенным предъявления настояшем руководстве по эксплуатации и ГОСТ РВ 15703-2005 «Военная техника. Порядок предъявления и удовлетворения рекламаций».

ПРИЛОЖЕНИЕ М ПРИВОД ВЕНТИЛЯТОРА

ПРИВОД ВЕНТИЛЯТОРА С ВЯЗКОСТНОЙ МУФТОЙ

Двигатели ЯМЗ могут комплектоваться вентилятором с вязкостной муфтой фирмы "Borg Warner" диаметром 600 мм (см. раздел «Назначение и особенности комплектации»).

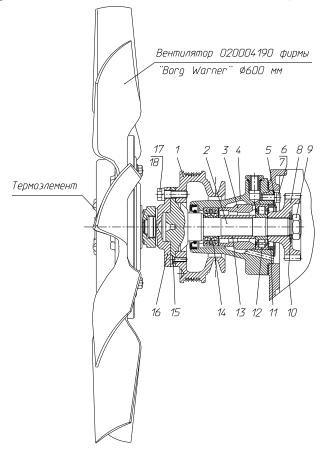


Рис. 160. Привод вентилятора:

1 — шкив; 2 — вал; 3 — втулка; 4 — корпус; 5 — фланец упорный; 6 — болт; 7 — шайба; 8 — шестерня; 9 — гайка; 10 — шайба; 11 — кольцо упорное; 12 — подшипник; 13 — втулка; 14 — подшипник; 15 — винт; 16 — проставка; 17 — болт; 18 — шайба

Вентилятор с вязкостной муфтой работает в автоматическом режиме в зависимости от температуры набегающего потока воздуха после радиатора. Муфта включается с помощью биметалического термоэлемента при температуре воздуха 62...68°C, что соответствует температуре охлаждающей жидкости 85...93°C.

ВНИМАНИЕ! ПРИ ДЕМОНТАЖЕ И ХРАНЕНИИ ВЯЗКОСТНОЙ МУФТЫ ВЕНТИЛЯТОР ДОЛЖЕН УСТАНАВЛИВАТЬСЯ ВЕРТИ-КАЛЬНО ИЛИ ГОРИЗОНТАЛЬНО ТЕРМОЭЛЕМЕНТОМ ВНИЗ.

ПРИЛОЖЕНИЕ Н ФИЛЬТР МАСЛЯНЫЙ СО СМЕННЫМ ФИЛЬТРОМ ДЛЯ МАСЛА

С мая 2013 года двигатели ЯМЗ комплектуются фильтром масляным 658.1012010 со сменным фильтром для масла (рисунок 161).

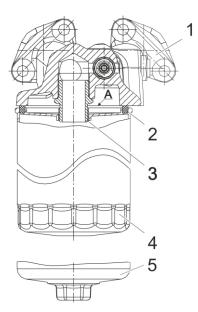


Рисунок 161. Фильтр масляный со сменным фильтром для масла:

1 – корпус фильтра масляного; 2 – кольцо уплотнительное; 3 – штуцер;
 4 – сменный фильтр для масла; 5 – вариант исполнения сменного фильтра для масла

A – поверхность уплотнительного кольца

Штуцер 3 в корпус фильтра масляного устанавливается на герметик УГ-9 с моментом затяжки $176...196 (18...20) \text{ H} \cdot \text{м}$ (кгс·м).

Замена сменного фильтра для масла выполняется при замене масла в двигателе (см. раздел «Техническое обслуживание»):

- при техническом обслуживании по окончании периода обкатки после первых 50 часов работы двигателя;
- при техническом обслуживании «ЧЕРЕЗ ОДНО ТО-1» через каждые 500 часов работы для двигателей ЯМЗ-236H, ЯМЗ-236Б, ЯМЗ-236HE, ЯМЗ-236БE, их комплектациях;
- при ТО-2 через каждые 1000 часов работы для двигателей ЯМЗ-236НЕ2, ЯМЗ-236БЕ2, их комплектациях.

При свечении лампы сигнализатора засоренности на прогретом двигателе сменный фильтр для масла необходимо заменить, не дожидаясь проведения очередного технического обслуживания.

ЗАМЕНА СМЕННОГО ФИЛЬТРА ДЛЯ МАСЛА

- 1. Заглушить двигатель.
- 2. Отвернуть сменный фильтр для масла 4 (рисунок 161). В случае затруднённого отворачивания сменного фильтра использовать специальный съёмник.
- 3. Смазать поверхность А уплотнительного кольца 2 нового сменного фильтра тонким слоем моторного масла, при этом проверив состояние уплотнительного кольца и опорной поверхности корпуса.
- 4. Навернуть сменный фильтр на штуцер 3 до упора, затем довернуть его еще примерно на 3/4 оборота.
- 5. Пустить двигатель и проверить фильтр на герметичность. При отсутствии герметичности увеличить момент затяжки до ее исключения.

При замене использовать следующие сменные фильтры для масла:

- 1. 5340.1012075 фильтр сменный для масла W 11 102 фирмы «MANN+HUMMEL».
- 2. ЛДКЯ 387631.070 (код 8.9191) фильтр сменный для масла М5103 производства СОАО «ДИФА» Республика Беларусь или «Торгового дома автофильтр ДИФА» г. Москва.

ВНИМАНИЕ! ИСПОЛЬЗОВАТЬ ТОЛЬКО УКАЗАННЫЕ ВЫШЕ СМЕННЫЕ ФИЛЬТРЫ ДЛЯ МАСЛА

ПРИЛОЖЕНИЕ П СТАРТЕР 5432.3708-01

Двигатели ЯМЗ могут комплектоваться герметичным стартером модели 5432.3708-01 ОАО «БАТЭ», г. Борисов, республика Беларусь, как альтернативный вариант герметичному стартеру 2562.3708-40.

Стартер 5432.3708-01 предназначен для пуска двигателей ЯМЗ с фланцевым креплением стартера тремя болтами М12, имеющих венец маховика с числом зубьев Z=132, выполненных с модулем 3,75, с питанием от аккумуляторной батареи емкостью не более 190 А·ч.

Стартер представляет собой сериесный (с последовательным возбуждением) электродвигатель постоянного тока с электромагнитным тяговым реле и дополнительным реле включения тягового реле, планетарным редуктором (передаточное отношение 3,56) и храповым механизмом привода.

Номинальный режим работы стартера кратковременный, с длительностью не более 15 с. Максимальная продолжительность непрерывной работы при отрицательных температурах – 20 с.

ТЕХНИЧЕСКИЕ ДАННЫЕ СТАРТЕРА

Номинальное напряжение, В	24
Номинальная мощность, кВт	9*
Ток холостого хода, А, не более	120
Напряжение при тормозном моменте 49H⋅м, B, не более	7,5
Ток при тормозном моменте 49 Н м, А, не более	750
Напряжение включения реле, В, не более	18
Давление щеточных пружин на щетки, Н	$50\pm 2,5$
Высота щеток исходная, мм	$19\pm0,5$
Масса стартера, кг, не более	12
Ток втягивающей и удерживающей обмоток	
тягового реле при U ном., А	300 ± 11
Ток удерживающей обмотки тягового	
реле при U ном., A, не более	24
Ток обмотки дополнительного реле при U ном., A, не более	5
Минимальная пусковая мощность, кВт	5,5
Частота вращения шестерни привода	
на холостом ходу, мин ⁻¹ , не менее	5000

^{*} Значение фактической номинальной мощности стартера должно быть не менее 90% от установленной номинальной.

ОПИСАНИЕ И РАБОТА СТАРТЕРА

Стартер 5432.3708-01 (рисунок 162) состоит из электродвигателя 1, рычага включения привода 5, крышки со стороны привода 3, редуктора 2 планетарного типа, привода 4, электромагнитного тягового реле 7, дополнительного реле включения тягового реле 6 и крышки со стороны коллектора 8.

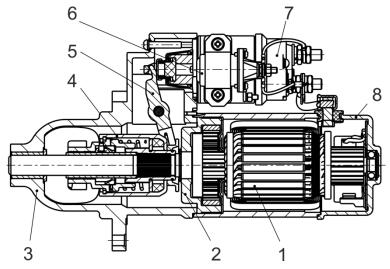


Рисунок 162 - Стартер 5432.3708-01:

1 — электродвигатель; 2 — редуктор планетарного типа; 3 — крышка со стороны привода; 4 — привод; 5 — рычаг включения привода; 6 — дополнительное реле включения тягового реле; 7 — электромагнитное тяговое реле; 8 — крышка со стороны коллектора

Полость электродвигателя и тяговое реле стартера защищены уплотнительными элементами от проникновения воды при кратковременном погружении стартера в пресную воду глубиной до 150 мм при прохождении автомобилем брода и от проникновения пыли.

Электродвигатель представляет собой четырехполюсный двигатель постоянного тока последовательного возбуждения, с питанием от аккумуляторной батареи.

В состав электродвигателя входят:

корпус с полюсами и катушками полюсов, к которым приварены щетки и вывод;

- якорь с пакетом железа, секциями и коллектором. На одном конце вала установлен шариковый подшипник, на другом конце вала выполнена шестерня планетарного редуктора и опорная шейка;
 - крышка со стороны коллектора 8;
 - траверса.

Крышка со стороны привода 3 с вкладышем имеет фланец для крепления тягового реле.

Редуктор 2 встраивается в корпус между якорем и крышкой со стороны привода 3 и служит для снижения частоты вращения шестерни привода стартера.

В состав редуктора входят корпус редуктора с шестерней коронной и демпферами, крышка редуктора, вал-водило в сборе с осями и игольчатым подшипником, являющимся второй опорой якоря, сателлиты в сборе с игольчатыми подшипниками.

На зубья шестерни коронной, сателлитов и внутренние поверхности игольчатых подшипников и нанесена смазка «Molykote 33» (импорт).

Привод 4 представляет собой муфту свободного хода, которая передает крутящий момент от вала-водило к шестерне и проскальзывает, когда шестерня вращается маховиком двигателя. Привод перемещается по прямым шлицам вала-водило.

Привод (рисунок 163) состоит из корпуса 1, храповика 2, шестерни 3, пружины 4, направляющей 5 с прямыми внутренними шлицами и винтовыми наружными шлицами, механизма для центробежного разъединения храповика 2 и шестерни 3, состоящего из конуса 6, трех сухариков 7 и трех штифтов 8.

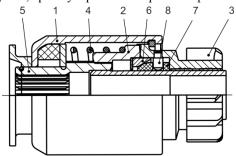


Рисунок 163 – Привод стартера 5432.3708-01:

1 — корпус; 2 — храповик; 3 — шестерня; 4 — пружина; 5 — направляющая; 6 — конус; 7 — сухарик; 8 — штифт

В привод заложена консистентная смазка ЦИАТИМ 203.

Электромагнитное тяговое реле посредством рычага включения привода обеспечивает ввод шестерни привода стартера в зацепление с венцом маховика дизельного двигателя и включение электродвигателя стартера.

Дополнительное реле включения тягового реле предназначено для снижения токовой нагрузки в цепи управления стартером и более плавного вхождения шестерни привода в зацепление с венцом маховика.

Электрическая часть стартера (рисунок 164) выполнена по однопроводной схеме, где вторым проводом служит корпус стартера.

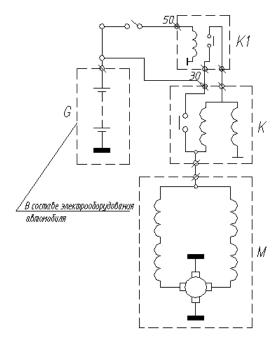


Рисунок 164 – Схема электрическая стартера

G – батарея аккумуляторная; K – тяговое реле; K1 – дополнительное реле; M – электродвигатель; "30" – контактный болт реле стартера, соединенный с аккумуляторной батареей; "50" – болт питания реле стартера

ЭКСПЛУАТАЦИОННЫЕ ОГРАНИЧЕНИЯ

- 1. Запрещается пуск двигателя с помощью постороннего источника электрической энергии с характеристиками, превышающими 24 В и суммарной емкостью аккумуляторных батарей, выходящей за пределы $190~\mathrm{A}\cdot\mathrm{v}$.
- 2. Категорически запрещается использовать стартер для приведения транспортного средства в движение.
- 3. Продолжительность непрерывной работы стартера не должна превышать 15 с, а при отрицательных температурах 20 с. Повторный пуск можно производить после 30 с перерыва, не менее. Допускаемое общее количество попыток пуска двигателя не более трех. Если двигатель при этом не заводится, необходимо найти неисправность и устранить.
- 4. При преодолении брода автомобилем с двигателем, на котором установлен стартер со степенью защиты IP67 двигатель загерметизировать во избежание попадания воды внутрь стартера
- 5. При стоянке транспортного средства цепь стартер аккумулятор необходимо отключить, пользуясь выключателем массы.
- 6. Производить разборку стартера только квалифицированным персоналом в специализированной мастерской, располагающей необходимым оборудованием, инструментами и средствами измерения.

СОДЕРЖАНИЕ

	Стр.
ВНИМАНИЕ!	4
НАЗНАЧЕНИЕ И ОСОБЕННОСТИ КОМПЛЕКТАЦИИ СИЛОВЫХ АГРЕГАТОВ	5
ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА	8
УСТРОЙСТВО И РАБОТА ДВИГАТЕЛЯ	21
МАРКИРОВАНИЕ И ПЛОМБИРОВАНИЕ	99
ЭКСПЛУАТАЦИОННЫЕ МАТЕРИАЛЫ	101
ТРЕБОВАНИЯ БЕЗОПАСНОСТИ	113
ПУСК, РАБОТА И ОСТАНОВКА СИЛОВОГО АГРЕГАТА	114
ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	122
РЕГУЛИРОВКА ДВИГАТЕЛЯ	128
ТЕКУЩИЙ РЕМОНТ ДВИГАТЕЛЕЙ	202
ОСОБЕННОСТИ РАЗБОРКИ И СБОРКИ ДВИГАТЕЛЯ	213
СЦЕПЛЕНИЕ	231
МЕХАНИЗМ ГАШЕНИЯ КРУТИЛЬНЫХ КОЛЕБАНИЙ И ОТБОРА МОЩНОСТИ	250
КОРОБКА ПЕРЕДАЧ	252
ГЕРМЕТИЗИРУЮЩИЕ СОСТАВЫ	279
ГАРАНТИИ ЗАВОДА И ПОРЯДОК ПРЕДЪЯВЛЕНИЯ РЕКЛАМАЦИЙ	280
УТИЛИЗАЦИЯ	287
ПРИЛОЖЕНИЯ	289
Приложение А. Комплект поставки	289
Приложение Б. Консервация и расконсервация	290
Приложение В. Моменты затяжки основных резьбовых соединений	304
Приложение Г. Сведения о содержании драгоценных материалов, цветных металлов и сплавов	306
Приложение Д. Предпродажная подготовка	309
Приложение Е. Привод вентилятора с КЭМ 32-23М2. Разборка и сборка привода вентилятора	312

	Стр.
Приложение Ж. Особенности двигателей с ТНВД V-образного исполнения	321
Приложение 3. Водяной насос с торцовым уплотнением фирмы «КАСО». Термостат с дренажным клапаном. Водяной насос производства ОАО «ТМЗ» с торцовым уплотнением фирмы «КАСО»	352
Приложение И. Привод вентилятора с централизованной смазкой	360
Приложение К. Сцепление ЯМЗ-182-15	364
Приложение Л. Силовые агрегаты ЯМЗ-236БЕ2-14 и ЯМЗ-236НЕ2-20	377
Приложение М. Привод вентилятора с вязкостной муфтой	393
Приложение Н. Фильтр масляный со сменным фильтром для масла	395
Приложение П. Стартер 5432.3708-01	397

ДЛЯ ЗАМЕТОК